

Vector Boson Scattering Measurements at CMS

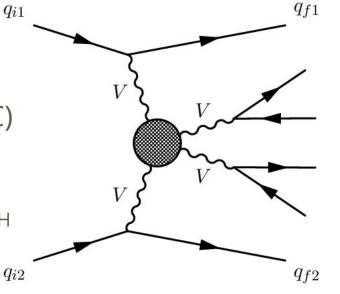
Antonio Vagnerini (Univ./INFN Torino)

On behalf of the CMS Collaboration

Higgs Hunting, 21/09/2021

Outline

- This is a VBS summary talk of the most recent CMS measurements
 - only results obtained with the full Run 2 data are included
- Several final states presented:
 - **fully-leptonic**: $W^{\pm}W^{\pm} \rightarrow 2|2v$; $WZ \rightarrow 3|v$; $ZZ \rightarrow 4|$
 - o semi-leptonic: WW/WZ→lvjj;
 - with photons: $Z\gamma \rightarrow 2l\gamma$;
- Inclusive/differential cross-section measurements
- EFT interpretation and constraints on anomalous quartic gauge couplings
 - **VBS** targets **explicit models** e.g. VBF H[±] and H^{±±}, see <u>talk</u> by Attikis
- Prospects for VV scattering measurements at the HL-LHC with the CMS detector



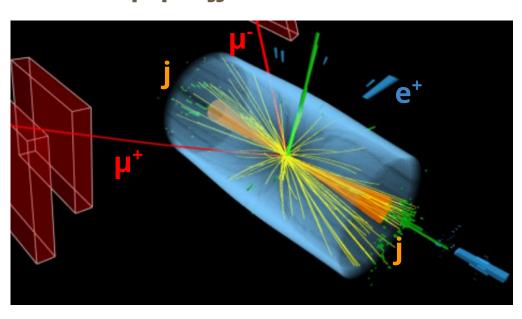
Motivation for VV scattering measurements

Electroweak process characterised by VVjj (V = W/Z) final state

- Probes the non-Abelian nature of SM:
 - direct access to triple/quartic gauge couplings (TGC/QGC)
 - sensitive to couplings between Higgs and gauge bosons
 - complementary to Higgs measurements at scales > m_H

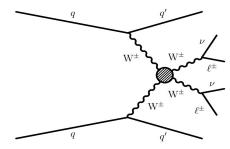
- Portal to BSM physics:
 - model-independent via Effective Field Theories (EFTs)
 - 18 bosonic operators in dim-8 EFT tested
 - set constraints on anomalous gauge couplings, aQGCs

Phys.Rev.D 74 (2006) 073005

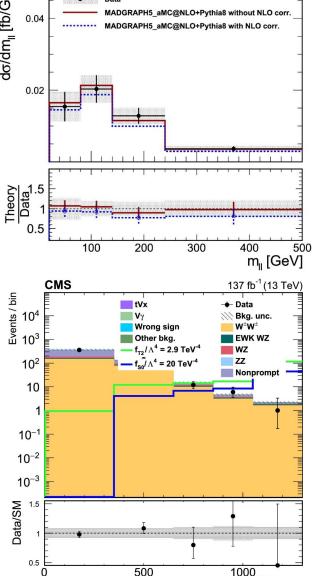


VV scattering at the LHC

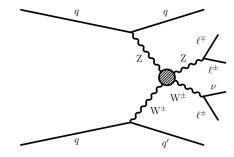
- Event topology:
 - 2 vector bosons produced centrally
 - 2 energetic tagging jets emitted back-to-back
- **Signature** based on **diboson** final states:
 - **fully leptonic:** 4 e/μ & 2 jets
 - **semi-leptonic/hadronic:** 4 jets & 1 or 2 e/μ
 - o fully-hadronic: 4 or 6 jets


W⁺Z→e⁺vµ⁺µ⁻ vjj candidate event

- Irreducible **tree-level contributions** to the final state:
 - EW = $O(\alpha^6_{EW})$: signal component
 - QCD = $O(\alpha_{EW}^4 \alpha_s^2)$ background : suppressed in high m_{jj} and high $|\Delta \eta_{jj}|$ region
 - Interference = $O(\alpha^5_{EW}\alpha_s)$ term : typically O(%) of the signal

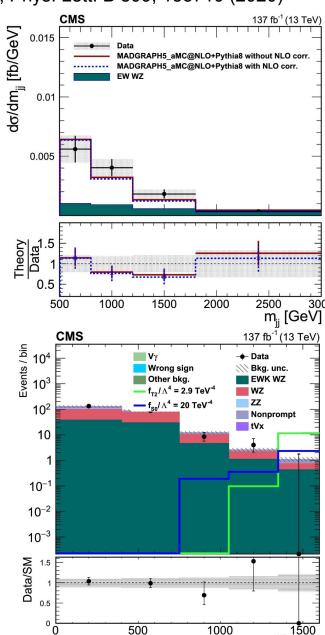

VBS W[±]W[±] \rightarrow 2l[±]2 ν

CMS, Phys. Lett. B 809, 135710 (2020)



- Same-sign WW fully leptonic is a "golden channel"
 - o good separation EW/QCD components σ_{EW}/σ_{QCD} ~4-6
 - full tower of NLO corrections known
- **Simultaneous** measurement **of W**[±]**W**[±]**/WZ** production
 - advantageous in definition signal/control region
- Data-driven estimation of non-prompt background
- Cross section measurement:
 - inclusive xsec from fit to the 2D m_{ii},-m_{II}, plane
 - o differential in m_{jj}, m_{II}, p_{T,I1}
- Stringent limits on dim-8 EFT operators from $m_T(WW)$

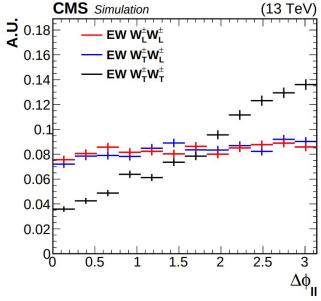
VBS WZ \rightarrow 3l1 ν

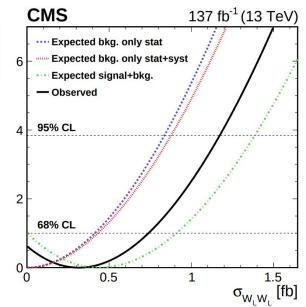

CMS, Phys. Lett. B 809, 135710 (2020)

- WZjj production has clean 3-lepton signature
 - o larger QCD bkg contribution since σ_{EW}/σ_{QCD} ~1/2
- BDT with lepton/jet kinematic as input variables
 - sensitivity improvement wrt 2D fit by 20%
- Analysis methods in common with W[±]W[±]

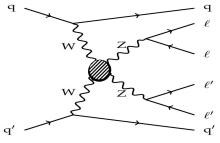
Process	$\sigma\mathcal{B}$ (fb)	Theoretical prediction without NLO corrections (fb)	Theoretical prediction with NLO corrections (fb)	
$EW \ W^\pm W^\pm$	3.98 ± 0.45 $0.37 (\mathrm{stat}) \pm 0.25 (\mathrm{syst})$	3.93 ± 0.57	3.31 ± 0.47	
EW+QCD W [±] W [±]	4.42 ± 0.47 $0.39 (\mathrm{stat}) \pm 0.25 (\mathrm{syst})$	4.34 ± 0.69	3.72 ± 0.59	
EW WZ	1.81 ± 0.41 $0.39 ({ m stat}) \pm 0.14 ({ m syst})$	1.41 ± 0.21	1.24 ± 0.18	
EW+QCD WZ	4.97 ± 0.46 $0.40 (\mathrm{stat}) \pm 0.23 (\mathrm{syst})$	4.54 ± 0.90	4.36 ± 0.88	
QCD WZ	3.15 ± 0.49 $0.45 (\mathrm{stat}) \pm 0.18 (\mathrm{syst})$	3.12 ± 0.70	3.12 ± 0.70	

• Constraints on dim-8 EFT operators from $m_{\tau}(WZ)$



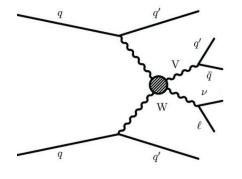

VBS W[±]W[±] \rightarrow 2l[±]2 ν Polarisation

CMS, Phys. Lett. B 812, 136018 (2021)


- First measurement of polarization states in VBS W[±]W[±]
 - challenging since low expected yields for W_LW_L
 - four-momentum of W-boson unknown
 - no direct access to helicity angles
- Similar strategy but different variables in BDT training
 - separately for WW & parton-parton rest frame
- Two-dimensional fit of two BDT output scores
 - inclusive: optimised to isolate EW WW from bkg
 - signal : designed to select W_LW_L or W_LW_X
 against other polarisation states
- Obs (exp) 2.6(2.9)σ significance for EW W_LW_X production and 95% U.L. of 1.17(0.88) fb for W_LW_L

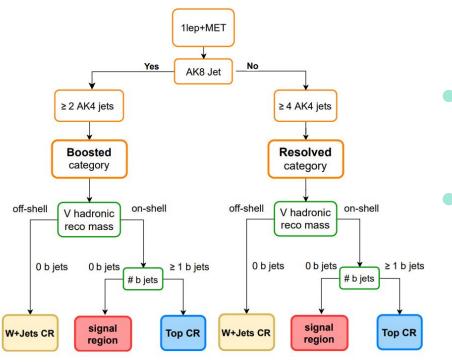
VBS ZZ \rightarrow 4l

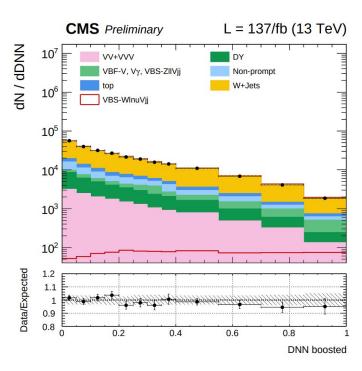
CMS, Phys. Lett. B 812, 135992 (2021)


	Perturbative order	SM σ (fb)	Measured σ (fb)
	Z	Zjj inclusive	
EW EW+QCD	LO NLO QCD NLO EW	$\begin{array}{c} 0.275 \pm 0.021 \\ 0.278 \pm 0.017 \\ 0.242^{+0.015}_{-0.013} \\ 5.35 \pm 0.51 \end{array}$	$0.33^{+0.11}_{-0.10} (\mathrm{stat})^{+0.04}_{-0.03} (\mathrm{syst})$ $5.29^{+0.31}_{-0.30} (\mathrm{stat}) \pm 0.47 (\mathrm{syst})$
	VBS-	enriched (loose)	
EW EW+QCD	LO NLO QCD	$\begin{aligned} 0.186 &\pm 0.015 \\ 0.197 &\pm 0.013 \\ 1.21 &\pm 0.09 \end{aligned}$	$0.180^{+0.070}_{-0.060}(\mathrm{stat})^{+0.021}_{-0.012}(\mathrm{syst})$ $1.00^{+0.12}_{-0.11}(\mathrm{stat})\pm0.07(\mathrm{syst})$
	VBS	enriched (tight)	
EW	LO NLO QCD	0.104 ± 0.008 0.108 ± 0.007	$0.09^{+0.04}_{-0.03}\mathrm{(stat)}\pm0.02\mathrm{(syst)}$
EW+QCD		0.221 ± 0.014	$0.20^{+0.05}_{-0.04}\mathrm{(stat)}\pm0.02\mathrm{(syst)}$

CMS $137 \text{ fb}^{-1} (13 \text{ TeV})$ -Data 2+X 10^{3} 10^{4} -Data 2+X $q\overline{q} \rightarrow ZZ$ $gg \rightarrow ZZ$ EW ZZjj $\Gamma f_{T9}/\Lambda^{4} = 2 \text{ TeV}^{-4}$ 10^{-2} 0 200 400 600 800 1000 1200 1400

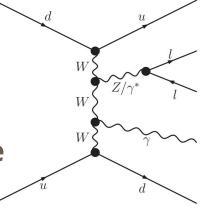
- One of the rarest SM processes observed to date:
 - 4l+2j clean channel with two l[±]l[∓] pairs
 - NLO QCD correction available matched to PS
- Evidence of EW ZZjj production at 4.0σ
- Matrix element analysis with discriminant K_D
 - to better distinguish signal from QCD ZZ (main bkg)
- Fiducial cross-section in 3 regions differing in EW-purity
- Constraints on dim-8 EFT operators (T8,T9)
 - o from **m(4l)** involving only neutral fields


VBS WW/WZ \rightarrow l ν jj

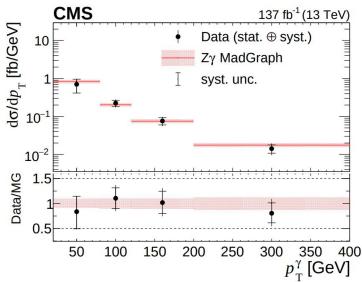


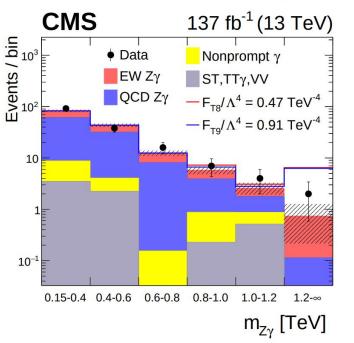
CMS-SMP-20-013 CDS:2776799

- Two vector bosons: W→e/µν and V ≡W/Z →qq
 - large hadronic BR(V→qq) compensates for high irreducible background
 - either two jets (resolved category) or one merged jet (boosted)


- DNN discriminantin signal region
- W+jets /top-quark control regions

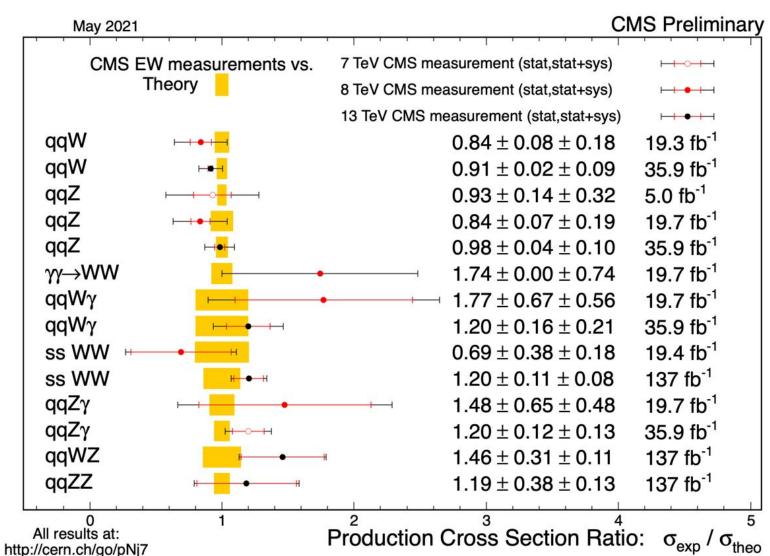
Observed (expected) **4.4(5.1)** σ significance for EW WV production


VBS Zγ →2lγ



- Zγ→I[±]I[∓] γ relatively clean signature
 - except QCD-induced bkg
- Data-driven estimation non-prompt background
 - 2D m_{jj},-m_{ll}, distributions used for EW signal fit
- Obs (exp) 9.4(8.5)σ significance for EW Zγjj process
 - o **differential** measurement in \mathbf{m}_{jj} ; \mathbf{p}_{T} , \mathbf{j}_{T} ; \mathbf{p}_{T} \mathbf{y}_{T} ; \mathbf{p}_{T} \mathbf{j}_{1}
- Strongest constraints on dim-8 EFT operators (T8,T9)
 - using invariant mass di-lepton photon $m(Z_{\gamma})$

arXiv:2106.11082; submitted to Phys. Rev. D



Summary Cross-section

- Good agreement with SM
- In some VBS VV scattering the EW measurements are ~1σ away from theory
- Accurate modelling of VVjj
 non-VBS contributions crucial

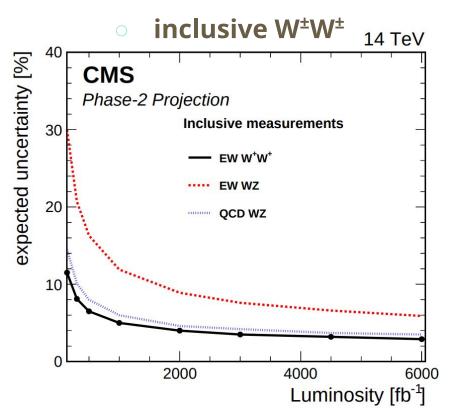
https://twiki.cern.ch/twiki/bin/view/CMS Public/PhysicsResultsCombined

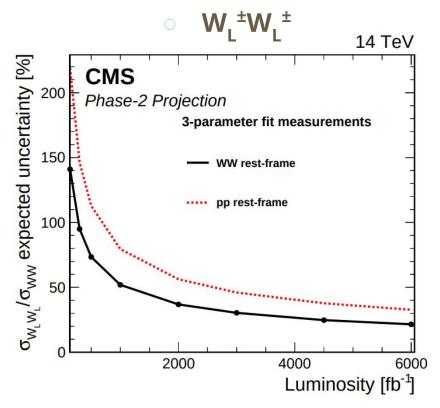
Summary of aQGCs limits

				4
	25	Ω	fh	-1
	33 ,	J.	IN	

4			_				:	:		West CV.	1112
	9		Observed	Expected	Observed	Expected	Observed	Expected	Observed	Expected	
			$\mathrm{W}^{\pm}\mathrm{W}^{\pm}$	$^{\pm} + WZ$	Z	\mathbf{Z}	V	$^{\prime}\gamma$	\mathbf{Z}	γ	
			(TeV	V^{-4})	(TeV	/ ⁻⁴)	/Te /	^{7–4})	(TeV	⁷⁻⁴)	
		$f_{\rm T0}/\Lambda^4$	[-0.25, 0.28]	[-0.35, 0.37]	[-0.24, 0.22]	[-0.37, 0.35]	[-0.6, 0.6]	[-0.6, 0.6]	[-0.52,0.44]	[-0.64,0.57]	
•	Transverse	$f_{\mathrm{T1}}/\Lambda^4$	[-0.12, 0.14]	[-0.16, 0.19]	[-0.31, 0.31]	[-0.49, 0.49]	[-0.4, 0.4]	[-0.3, 0.4]	[-0.65,0.63]	[-0.81,0.90]	
!		$f_{\mathrm{T2}}/\Lambda^4$	[-0.35, 0.48]	[-0.49, 0.63]	[-0.63, 0.59]	[-0.98, 0.95]	[-1.0, 1.2]	[-1.0, 1.2]	[-1.36, 1.21]	[-1.68,1.54]	
i	(4 gauge tensors)	$f_{\mathrm{T5}}/\Lambda^4$	-		3 1 - 1	_	[-0.5, 0.5]	[-0.4, 0.4]	[-0.45, 0.52]	[-0.58,0.64]	
:	($f_{\rm T6}/\Lambda^4$	_	_	_	_	[-0.4, 0.4]	[-0.3, 0.4]	[-1.02, 1.07]	[-1.30,1.33]	
		$f_{\rm T7}/\Lambda^4$			_	_	[-0.9, 0.9]	[-0.8, 0.9]	[-1.67,1.97]	[-2.15,2.43]	
ı		$f_{\rm T8}/\Lambda^4$		_	[-0.43, 0.43]	[-0.68, 0.68]	g .)		[-0.36,0.36]	[-0.47,0.47]	
i		$f_{\mathrm{T9}}/\Lambda^4$	<u></u>	<u> </u>	[-0.92, 0.92]	[-1.50, 1.50]		<u> </u>	[-0.72,0.72]	[-0.91,0.91]	
ì		$f_{\rm M0}/\Lambda^4$	[-27, 29]	[-3.6, 3.7]			[-81, 80]	[-7.7, 7.6]	A CONTRACTOR OF THE PERSON OF	[-15.8,16.0]	
•		$f_{\rm M1}/\Lambda^4$	[-4.1, 4.2]	[-5.2, 5.5]	· · · · ·	-	[-12, 12]	[-11, 11]	[-28.1,27.0]	[-35.0,34.7]	
!	Mixed	$f_{\mathrm{M2}}/\Lambda^4$	<u> </u>	_			[-2.8, 2.8]	[-2.7, 2.7]	[-5.21,5.12]	[-6.55,6.49]	
	(2 Higgs fields	$f_{\mathrm{M3}}/\Lambda^4$	_	_	0	_	[-4.4, 4.4]	[-4.0, 4.1]	[-10.2,10.3]	[-13.0,13.0]	
1	(2 Higgs-fields	$f_{\rm M4}/\Lambda^4$	<u></u>	<u>=</u>	N2Y		[-5.0, 5.0]	[-4.7, 4.7]	[-10.2,10.2]	[-13.0,12.7]	
	2 gauge tensors)	$f_{\rm M5}/\Lambda^4$	200-100-2		35		[-8.3, 8.3]	[-7.9, 7.7]	[-17.6,16.8]	[-22.2,21.3]	
	_ 80.0.80 (0.100.0)	$f_{\rm M6}/\Lambda^4$	[-5.4, 5.8]	[-7.2, 7.3]	·		[-16, 16]	[-15, 15]	_	_	
ſ		$f_{\rm M7}/\Lambda^4$	[-5 7, 6 0]	[-7.8, 7.6]			[-21, 20]	[-19, 19]	[-44 7 45 0]	[-56 6,55 9]	
	Scalar	$f_{\rm S0}/\Lambda^4$	[-5.7, 6.1]	[-5.9, 6.2]	99	_	· ·	_	<u> </u>	_	
1		$f_{\rm S1}/\Lambda^4$	[-16, 17]	[-18, 18]		(* 	S			_	

- Competitive limits for different final states: semi-leptonic channels more sensitive
- Expected/observed limits are in good agreement




Prospects for the VBS measurements at HL LHC

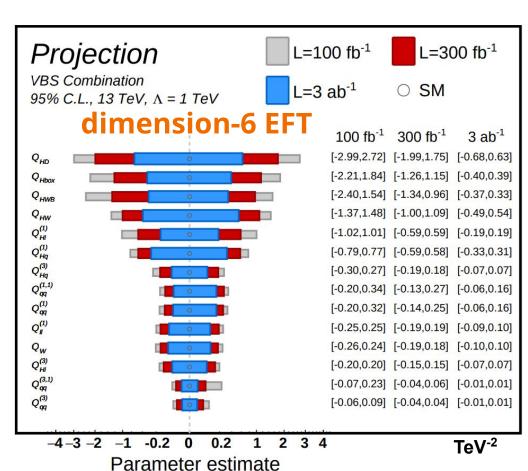
Prospects for the study of VBS W[±]W[±]/WZ channels:

- CMS-FTR-21-001 CDS:2776773
- EW production and polarized EW W[±]W[±] production

Analysis based on existing results at 13 TeV extrapolated to 14 TeV at HL-LHC

Summary

- Highlights from recent VBS CMS measurements: consistency tests of EW sector
- VBS powerful tool to explore BSM physics in "UV-agnostic" way
- **Extremely challenging** measurement:
 - very low yields as among rarest processes ever measured
 - require very accurate modelling of QCD-induced background
- Full set of Run 2 and 3 needed to perform polarisation measurements and high precision differential measurements



Outlook

- Extend scope of polarisation measurements to other VBS channels:
 - add WZ, ZZ, W[±]W[∓] production modes
- High precision differential measurements
 - test more variables
 - study variable cross-correlations
- Expand scope of EFT analyses
 - combination of VBS channels to constrain dimension 6 and 8 EFT operators

arXiv:2108.03199v1

Prospects for High-Luminosity LHC

- Cross sections at LO and NLO EW for W⁺W⁻ scattering at √s=14,27,100 TeV
 - σ increase with √s while EW corrections become negatively larger
 - typical scale in the Sudakov logarithms is increasing

\sqrt{S}	$\sigma^{ m LO}[{ m fb}]$	$\sigma_{ m EW}^{ m NLO}[{ m fb}]$	$\delta_{ m EW} [\%]$	
$14\mathrm{TeV}$	1.4282(2)	1.213(5)	-15.1	
$27\mathrm{TeV}$	4.7848(5)	3.881(7)	-18.9	\/'
$100\mathrm{TeV}$	25.485(9)	19.07(6)	-25.2	arXiv:2102.10991

- Simulations of upgraded detectors at √s=14 and total luminosity 3000 fb⁻¹
 - VBS W[±]W[±] expected total uncertainty on cross section is 4.5 (5-6)% for CMS(ATLAS)
 - VBS W₁ [±]W₁ [±] CMS+ATLAS combination should yield 3σ discovery
 - VBS W[±]Z overall expected uncertainty 5.5 (5)% for CMS(ATLAS)
 - VBS $W^{\pm}Z_{L}$ expect evidence of 1.3-1.4 σ for CMS and 1.5-2.5 σ for ATLAS