ATLAS additional scalar bosons

Ke Li on behalf of ATLAS Collaboration 21/09/2021

Higgs hunting 2021

Introduction

- Many BSM models predict an extended scalar sector.
 - > 2HDM, 2HDM+singlet, 3HDM, hMSSM ...
 - > Additional scalars: H, A, H^{\pm} , $H^{\pm\pm}$

Recent searches for new scalars in ATLAS

Parameters in 2HDM:

Higgs bosons masses

 α : mixing angle between h and H

 $tan\beta$: Ratio of vacuum expectation values

Target	Channels	Luminosity (fb^{-1})	Reference
Heavy neutral H/A	A→Zh (h = 125 GeV Higgs)	139	ATLAS-CONF-2020-043/
	A → ZH (H ≠ 125 GeV Higgs)	139	EPJC 81 (2021) 396
	$H \rightarrow ZZ$	139	EPJC 81 (2021) 332
	$A/H o \gamma \gamma$	139	arXiv:2102.13405
	$A/H \rightarrow \tau \tau$	139	PRL 125 (2020) 051801
Charged $H^\pm/H^{\pm\pm}$	H [±] →cb	139	ATLAS-CONF-2021-037
	$t \to H^\pm \ b, H^\pm \to \mathrm{A} W^\pm, \mathrm{A} \to \mu \mu$	139	ATLAS-CONF-2021-047
	$H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ and $H^{\pm} \rightarrow W^{\pm}Z$	139	JHEP 06 (2021) 146

Di-higgs: see Petar's talk $H^{\pm} \rightarrow tb$: see Adrian's talk **H(125) BSM decays**: see Adriana's talk

Heavy neutral Higgs: A→ZH

- A: CP-odd; H: CP even heavy Higgs.
- > $ZH \rightarrow llbb$ from ggF and bbA.
 - $-H \rightarrow bb$ dominant in large part of 2HDM parameters space, especially in the weak decoupling limit ($cos(\beta \alpha) = 0$)
- > $ZH \rightarrow llWW \rightarrow ll4q$ from ggF.
 - $-H \rightarrow WW$ dominant in the space close to the weak decoupling limit
- > Analysis: select a Z candidate (ee or $\mu\mu$), and 2 b-jets(ggF llbb) or >=3 b-jets (bbA llbb) or >=4 jets (ggF llbb).
- \geq Dominant background, Z+jets and $t\bar{t}$, are constrained from data CRs

Heavy neutral Higgs: A→ZH

- The search is performed in the (m_H, m_A) plane for different models (type-I, type-II, lepton-specific and flipped).
- No significant deviation from the SM is observed.
- Most significant excess:

(m_A, m_H) (GeV)	Global(local) significance (σ)	channel
(610, 290)	1.3(3.1)	ggF llbb
(440, 220)	1.3(3.1)	bbA <i>llbb</i>
(440, 310)	0.8(2.9)	ggF <i>llWW</i>

Heavy neutral Higgs: A→Zh (h=125 GeV Higgs)

- > $Zh \rightarrow llbb$ and vvbb from ggF.
- **Solution** Sensitivity for small $tan\beta$.
- $h \rightarrow bb$ could be resolved (2 small-R jets) or merged (1 large-R jet).
- **Dominant background:** $t\bar{t}$ and Z+jets, constrained from data.

• Largest excess is at 500 GeV (llbb channel) with a local significance of 1.6σ .

Heavy neutral Higgs: H→ZZ

- $ZZ \rightarrow llll$ or llvv from ggF and vector boson fusion (VBF).
- > Main background: SM ZZ, normalization is derived from data.
- > Two classifier (ggF and VBF) of Deep neural networks (DNN) to improve the sensitivity.

- Interpreted the search for type-I and type-II 2HDM models.
- · Both large width and narrow width resonances are searched.
- No significant deviation from the SM is observed.

Heavy neutral Higgs: $H \rightarrow \gamma \gamma$

- Search strategy: search for resonant structures in the high-mass $\gamma\gamma$ spectrum, fitting signal and background components using analytical functions.
- > Optimized selections and updated calibrations and systematics treatment for full-Run-2 dataset.
- Require two photons with tight identification and isolation.
- **Background shape derived from** $\gamma\gamma$ **events and data-driven** γ +**jets events.**

- Most significant excess is at ~684 GeV with 1.3σ (3.3 σ) global (local) significance.
- Scanned both signal mass and a range of width hypotheses.

W

Heavy neutral Higgs: A/H $\rightarrow \tau \tau$

- $A/H \rightarrow \tau\tau$ is enhanced in Type-II 2HDM, or MSSM.
- **ggF** and bbA production with $\tau\tau$ decay to lepton-hadron and hadron-hadron final states.
- > Dominant backgrounds, W+jets and multijets, are constrained from data.

- Most significant excess is at ~400 GeV with local significance of 2.2σ from ggF and 2.7σ from bbA.
- Strongest MSSM limits, especially at high tanβ.
- In the M_h^{125} scenario, exclude $tan\beta > 8(21)$ at $m_A = 1.0(1.5)$ TeV.

Run 2 summaries: hMSSM

Exclusion plot from direct and indirect searches

- At tree level, depends on two BSM parameters:
 - m_A and an eta
 - At high m_A , strongest limits come from $A \rightarrow \tau \tau$.
- At low m_A , exclude by several channels.
- More studies with full run-2 data.

Singly and doubly charged Higgs bosons

Target	Channels	Luminosity (fb^{-1})	Reference
	H [±] →cb	139	ATLAS-CONF-2021-037
Charged $H^{\pm}/H^{\pm\pm}$	$t \to H^{\pm} b, H^{\pm} \to A W^{\pm}, A \to \mu \mu$	139	ATLAS-CONF-2021-047
	$H^{\pm\pm} o WW$	139	JHEP 06 (2021) 146

Charged Higgs: $H^{\pm} \rightarrow cb$

- > The charged higgs can be lighter than the top quark -> $t \rightarrow H^{\pm}b$.
- $H^\pm \to cb$ channel has lower irreducible SM background from $t\bar t$ and W decays compared to $H^\pm \to au
 u/cs$.
- **>** One electron/muon $+ \ge 4$ jets (≥ 2 b-jets).
- $t\bar{t}$ +jets is the dominant background, corrected by a data-based approach.
- > NN classifier exploiting kinematic and b-tagging information is used to enhance signal sensitivity.

3HDM predictions

• Most significant excess is at ~130 GeV with global (local) significance of ~2(3) σ .

Charged Higgs: $H^{\pm} \rightarrow AW^{\pm}$

- Previous searches focused on the $\tau v/cs/cb$ channels.
- If the A is light and $H^{\pm} \rightarrow AW^{\pm}$ is kinematically allowed, the $\tau v/cs/cb$ will be suppressed.
- > Signal signature: $\mu^+\mu^-e^\pm + \ge 3$ jets (≥ 1 b jet).
- Main backgrounds, $(t\bar{t}, ttZ, Z + FH)$ are normalized from 3 data CRs.

- No significant deviation from the SM predictions is observed.
- Largest excess is at 24 GeV with a local significance of 1.24σ .
- · The results are interpreted in type-I 2HDM.

Charged Higgs: $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ and $H^{\pm} \rightarrow W^{\pm}Z$

- > Two scenarios from type-II seesaw model:
 - $m_{H^+} m_{H^{++}} \geq 100$ GeV, searched in pair production of $H^{\pm\pm}$ $H^{\mp\mp}$
 - | $m_{H^+} m_{H^{++}} \le$ 5 GeV, searched in associated production of $H^{\pm\pm}H^{\mp}$

Pair production

Associated production

- > Search in 3 channels (2*l*, 3*l*, 4*l*).
- Optimized for pair production mode.
- Prompt lepton background: MC simulation + WZ (normalized from a data CR).
- Non-prompt lepton and electron charge-flip background: data-driven estimation.

Charged Higgs: $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ and $H^{\pm} \rightarrow W^{\pm}Z$

- Separate profile likelihood test for each signal hypothesis, combine the 2*l*, 3*l* and 4*l* channels to estimate the upperlimit.
- The model is excluded for $H^{\pm\pm}$ below 350 GeV (pair production) and 230 GeV (associated production).

Summary

- > Lots of interesting new results on additional scalar searches with full Run2 data (139 fb⁻¹).
 - Many more are in the pipeline
- No strong evidence for any BSM scalars yet!
 - But many excesses w.r.t. SM prediction are observed with ~1(3) σ global (local) significance
- > Run3 data taking will start at 2022.
 - Hopefully > 150 fb⁻¹ data

Thanks for the attention.

Back-up

Heavy neutral Higgs: H→ZZ

- > Two DNN classifier for ggF and VBF
- > ggF classifier input:
 - Four lepton invariant mass, momentum and pseudorapidity, helicity angles of lepton in Z rest frame, P_T and psedorapidity of leading jet
- > VBF classifier input:
 - Invariant mass of four lepton, P_T and invariant mass of two leading jets, difference in pseudorapidity between four lepton and leading jet, minimum angular separation between lepton pair and jet

Heavy neutral Higgs: $H \rightarrow \gamma \gamma$

 \geq 2D scan of resonance mass and width in $\gamma\gamma$ spectrum

Spin-0				
m_X	400 GeV	2800 GeV		
NWA	1.1 fb	0.03 fb		
$\Gamma_X/m_X=2\%$	2.5 fb	0.03 fb		
$\Gamma_X/m_X=6\%$	4.4 fb	0.03 fb		
$\Gamma_X/m_X=10\%$	8.3 fb	0.04 fb		

Heavy neutral higgs: A/H $\rightarrow \tau \tau$

- \rightarrow Hadronic τ reconstruction:
 - Seeded by jets
 - BDT classifier to distinguish from quark/gluon jets
 - Based on calorimeter shower shapes and tracking information
- > Dominant background
 - Hadhad: multijets, constrained from a CR in data
 - LepHad:
 - > W+jets (b-veto category): data-driven estimation
 - $\bar{t}t$ (b-tag category): constrained from a CR in data

Charged Higgs: $H^{\pm} \rightarrow cb$

- Categories based on numbers of jets and b-jets
- > Binned likelihood fit is performed on the NN score in 6 SRs

Charged Higgs: $H^{\pm} \rightarrow AW^{\pm}$

- $> \mu\mu$ mass spectrum is used to perform the search
- Divided into small windows and search for the deviation from SM prediction

• The limits for different masses of H^{\pm} and A are estimated