Precise predictions for double-Higgs production via vector-boson fusion

Mathieu PELLEN

University of Freiburg

Based on arXiv:2005.13341 - EPJC 80 (2020) 11

In Collaboration with:

Frédéric A. Dreyer, Alexander Karlberg, Jean-Nicolas Lang

Higgs Hunting 2021, Paris (France) 20th of September 2021

<u>LHC</u>: Great tool to probe fundamental interactions at high energies → Great to measure Higgs bosons

- Main discovery of the LHC!
 - → no more hunting
 - → focus on the measurements of its properties
 - → High-luminosity LHC

→ Large variety of Higgs processes with very different phenomenology!

VBF HH at NNLO QCD + NLO EW

→ Higgs self-coupling + extra handle with tagging jets

VBF HH at NNLO QCD + NLO EW

→ Higgs self-coupling + extra handle with tagging jets

In [Dreyer, Karlberg, Lang, MP; 2005.13341]:

- Full NLO QCD + EW (new) from MoCanlo+Recola [Actis et al.; 1605.01090]
- NNLO QCD corrections [Dreyer, Karlberg; 1811.07918] from PROVBFHH
- Non-factorisable corrections at NNLO [Dreyer, Karlberg, Tancredi; 2005.11334]

VBF HH at NNLO QCD + NLO EW

→ Higgs self-coupling + extra handle with tagging jets

In [Dreyer, Karlberg, Lang, MP; 2005.13341]:

- Full NLO QCD + EW (new) from MoCanlo+Recola [Actis et al.; 1605.01090]
- NNLO QCD corrections [Dreyer, Karlberg; 1811.07918] from PROVBFHH
- Non-factorisable corrections at NNLO [Dreyer, Karlberg, Tancredi; 2005.11334]

Already available:

- NLO QCD in VBF approximation [Figy; 0806.2200], [Baglio et al.; 1212.5581]
- NLO QCD + PS [Frederix et al.; 1401.7340]
- N³LO QCD (inclusive) [Dreyer, Karlberg; 1811.07906]

• LO at $\mathcal{O}\left(\alpha^4\right)$ In addition to VBF contributions: pp \rightarrow VHH \rightarrow HHjj (Higgs-Strahlung contributions) \rightarrow pp \rightarrow HHjj = VBF + VHH

$$K_{
m full/VBF} = rac{d\sigma_{
m LO}^{
m full}}{d\sigma_{
m LO}^{
m VBF}}$$

- Full NLO QCD at $\mathcal{O}\left(\alpha_{\rm s}\alpha^4\right)$
 - → all real QCD radiations and all virtual diagrams included

- Full NLO QCD at $\mathcal{O}\left(\alpha_{\mathrm{s}}\alpha^{\mathrm{4}}\right)$
 - → all real QCD radiations and all virtual diagrams included
- NNLO QCD in VBF approximation at $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^4\right)$
 - → does not include gluon exchange between quark lines

- Full NLO QCD at $\mathcal{O}\left(\alpha_{\mathrm{s}}\alpha^{\mathrm{4}}\right)$
 - → all real QCD radiations and all virtual diagrams included
- NNLO QCD in VBF approximation at $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^4\right)$
 - → does not include gluon exchange between quark lines

$$\sigma_{\rm NNLO~QCD} = \sigma_{\rm LO}^{\rm full} + \delta_{\rm NLO~QCD}^{\rm full} + K_{\rm full/VBF} \delta_{\rm NNLO~QCD}^{\rm VBF},$$

- Full NLO QCD at $\mathcal{O}\left(\alpha_{\rm s}\alpha^4\right)$ \rightarrow all real QCD radiations and all virtual diagrams included
- NNLO QCD in VBF approximation at $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^4\right)$
 - → does not include gluon exchange between quark lines

$$\sigma_{\rm NNLO~QCD} = \sigma_{\rm LO}^{\rm full} + \delta_{\rm NLO~QCD}^{\rm full} + K_{\rm full/VBF} \delta_{\rm NNLO~QCD}^{\rm VBF},$$

• NLO EW at $\mathcal{O}\left(\alpha^4\right)$ all real photon corrections and virtual diagrams included photon-induced contributions neglected

$$\sigma_{\rm NNLO\;QCD\times NLO\;EW} = \sigma_{\rm NNLO\;QCD} \left(1 + \frac{\delta_{\rm NLO\;EW}^{\rm full}}{\sigma_{\rm LO}^{\rm full}}\right)$$

 \rightarrow as in the Higgs cross-section working-group report for VBF

Set-up

Input:

- LHC at $\sqrt{s} = 14 \,\text{TeV}$
- PDF: NNPDF31_nnlo_as_0118_luxqed [NNPDF; 1712.07053]

$$\bullet \ \mu = \sqrt{\frac{M_{\rm H}}{2} \sqrt{\left(\frac{M_{\rm H}}{2}\right)^2 + p_{\rm T,HH}^2}}$$

Event selection:

- $p_{T,i} > 25 \text{ GeV}$ and $|y_i| < 4.5$
- $m_{j_1j_2} > 600 \,\text{GeV}$ and $|y_{j_1} y_{j_2}| > 4.5$
- No cuts on the Higgs bosons
- → Exclusive cuts to ensure reliable VBF approximation

Cross sections

$\sigma_{ m LO}^{ m full}$	$\delta_{ m NLO~QCD}^{ m full}$	$\delta_{ m NNLO~QCD}^{ m VBF}$	$\delta_{ m NLO~EW}^{ m full}$	σ _{NNLO QCD×NLO EW} [fb]
$0.78444(9)^{+0.0825}_{-0.0694}$	-0.07110(13)	-0.0115(5)	-0.0476(2)	$0.6684(5)^{+0.002}_{-0.0004}$
+10.5% -8.8%	-9.1%	-1.5%	-6.1%	-14.8% ^{+0.3%} -0.06%

- Non-factorisable corrections: 0.01237(2) i.e. +1.7%
- NLO EW corrections of the order of NLO QCD and larger than NNLO QCD
 - → Typical size of EW corrections
 - (-5% for VBF [Ciccolini, Denner, Dittmaier; 0710.4749])
 - ightarrow As opposed to intrinsic large EW corrections in VBS

[Biedermann, Denner, MP; 1611.02951]

Measurable at the High-luminosity LHC

Differential distributions (1)

- Effect of VBF approximation up to 20%
- EW Sudakov logarithms in tails of distributions: −25%

Differential distributions (2)

- Important distributions for VBF: m_{ii} and $|\Delta y_{jj}|$
- Corrections at the level of 10/20%
- More distributions in [Dreyer, Karlberg, Lang, MP; 2005.13341]

Summary

NNLO QCD + NLO EW for VBF HH [Dreyer, Karlberg, Lang, MP; 2005.13341]

- State of the art predictions at fixed order
- Quantifies VBF approximation
- NLO EW corrections of the order of the QCD ones

Thank you