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Can we view machine learning as part of 

quantum field theory?

And why?
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Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, 2021.



3

A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

1. Factors are the fundamental building blocks of probability distributions. 

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

1. Factors are the fundamental building blocks of probability distributions. 

2. By controlling the factors we are able to control the probability distribution.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We require some form of representation to construct the probability distribution. We 
are going to use a finite set 𝛬 that we express as a graph 𝐺(𝛬,e) where e is the set of 

edges in 𝐺.

A clique c is a subset of 𝛬 where the points are pairwise connected. A maximal clique is 
a clique where we cannot add another point that is pairwise connected with all the 

points in the subset.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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On the square lattice a 
maximal clique is an edge.

On a triangular lattice a 
maximal clique is a triangle.

On the square lattice with 
both diagonals a maximal 

clique is a square.

On the bipartite graph, 
which represents standard 

neural network 
architectures a maximal 

clique is an edge.

Quantum field-theoretic machine learning
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Representation

Given a graph 𝐺(𝛬,e), the random variables φi at each point i define a Markov 
random field if they fulfill the local Markov property with respect to 𝐺.

The local Markov property denotes that a random variable φi depends only on its 
neighbors and it is conditionally independent of all other random variables in the 

set:
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Hammersley-Clifford theorem

A strictly positive distribution p satisfies the local Markov property of an 
undirected graph 𝐺:

if and only if p can be represented as a product of strictly positive potential 
functions ψc over 𝐺, one per maximal clique c, i.e.

where Z is the partition function and φ are all possible states of the system.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Representation

There are two different directions to pursue:

1. We can devise potential functions that satisfy the Hammersley-Clifford theorem to 
construct a Markov random field.
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Representation

There are two different directions to pursue:

1. We can devise potential functions that satisfy the Hammersley-Clifford theorem to 
construct a Markov random field.

2. We can evaluate if known physical systems can be recast within this mathematical 
framework by verifying instead if they satisfy the theorem.

We will pursue the second direction. 
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2d φ4 theory:
Representation

k
L
,μ

L
,λ

L
 dimensionless parameters

Inhomogeneous φ4 theory:

wij
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The φ4  lattice field theory is, by definition, formulated on a square lattice which is 
equivalent to a graph 𝐺(𝛬,e). A non-unique choice of potential function per each 

maximal clique is:

The probability distribution is expressed as a product of strictly positive potential 
functions ψ, over each maximal clique:

The φ4 theory satisfies Markov properties and it is therefore a Markov random field.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Representation

The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5
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Representation

The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5

Not allowed!!
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Representation

The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5

A Markov random field satisfies the Markov property in high-dimensions

φ8

φ5

φ2

φ4 φ6

φ1 φ3

φ7 φ9
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Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?

Exactly in the same way as any other machine learning algorithm...

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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The φ4 theory has a probability distribution p(φ;θ) with action S(φ;θ):

 We now consider a quantum field theory with action Α and a target probability 
distribution q(φ):

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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 We can then define an asymmetric distance between the probability distributions p(φ;θ) and 
q(φ), which is called the Kullback-Leibler divergence:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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 We can then define an asymmetric distance between the probability distributions p(φ;θ) and 
q(φ), which is called the Kullback-Leibler divergence:

We want to minimize the Kullback-Leibler divergence.

By minimizing it we would make the two probability distributions equal. We can then use the 
probability distribution p(φ;θ) of the φ4 theory to draw samples from the target distribution 

q(φ) of action A.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We substitute the two probability distributions in the Kullback-Leibler divergence to obtain:

There are two important observations on the above equation:
1. It sets a rigorous upper bound to the calculation of the free energy of the system with action A.
2. The bound is dependent entirely on samples drawn from the distribution p(φ;θ) of the φ4 theory.

Bogoliubov Inequality
<> denotes expectation value

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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To minimize the variational free energy we implement a gradient-based approach:

We then update the coupling constants θ at each step t until convergence.

After training we expect that, practically:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Learning

A first proof-of-principle demonstration is to use the inhomogeneous action S:

to learn a homogeneous action A:
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Learning

to learn an action that includes longer-range interactions:

A proof-of-principle demonstration is to use the inhomogeneous action S:
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Learning

to learn an action that includes longer-range interactions:

A proof-of-principle demonstration is to use the inhomogeneous action S:
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Three reweighting (simultaneous) steps: Make the (already trained) inhomogeneous action S:

Equal to the target action A (acts as a correction step):

Learning
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Three reweighting (simultaneous) steps: Make the (already trained) inhomogeneous action S:

g’

Equal to the target action A (acts as a correction step):

Extrapolate in the parameter space along the trajectory of a coupling constant g’ of A

Learning
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Three reweighting (simultaneous) steps: Make the (already trained) inhomogeneous action S:

g’

g’

Equal to the target action A (acts as a correction step):

Extrapolate in the parameter space along the trajectory of a coupling constant g’ of A

Extrapolate to an imaginary term

Learning
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Learning

The results include reweighting to a complex-valued coupling constant on the mass term and extrapolations in parameter space 
along the trajectory of the coupling constant g4 in the longer-range interaction.

g’
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What if the target probability distribution q(φ) is unknown?

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Earlier we defined the Kullback-Leibler divergence as:

We will now consider the opposite divergence:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We can expand the Kullback-Leibler divergence and obtain:

The first right-hand term is constant. Minimizing the Kullback Leibler divergence is 
equivalent to maximizing the second right-hand term.

We can do this by relying again on a gradient-based approach.

Learning
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Learning

Calculated on the data Calculated on samples 
from the equilibrium 

distribution

The derivative of the log-likelihood is: 
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We are searching for the optimal values of the coupling constants in the φ4 action 
that are able to reproduce the data as configurations in the equilibrium 

distribution.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Learning

We are searching for the optimal values of the coupling constants in the φ4 action 
that are able to reproduce the data as configurations in the equilibrium 

distribution.

Case of a Gaussian distribution:
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Learning

We are searching for the optimal values of the coupling constants in the φ4 action 
that are able to reproduce the data as configurations in the equilibrium 

distribution.

Case of a Gaussian distribution:
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Case of an image:

We are searching for the optimal values of the coupling constants in the φ4 action 
that are able to reproduce the data as configurations in the equilibrium 

distribution.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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φ4 Markov random field φ4  neural network

Hidden layer

Visible layer

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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From the joint probability distribution of the φ4 neural network

We are able to marginalize out variables and derive marginal probability distributions 
p(φ;θ) and p(h;θ):  

Hidden layer

Visible layer

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We now want to minimize the asymmetric distance between the empirical probability 
distribution q(φ) and the marginal probability distribution p(φ;θ):

In other words, we want to reproduce the dataset in the visible layer. The hidden 
layer will then uncover dependencies on the data.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Hidden layer

Visible layer

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Hidden layer

Visible layer

Examples of the coupling constants wij with j fixed

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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The φ4 neural network:

 is a generalization of other neural network architectures:

Gaussian-Gaussian 
restricted Boltzmann 

machine:

bi=nj=0

Gaussian-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=0
hj binary

Bernoulli-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=ai=0
φι,hj binary

φ4-Bernoulli restricted 
Boltzmann machine:

mj=nj=0
hj binary

φ4 equivalence with the Ising model (under an appropriate limit)

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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The hidden layer can serve as 
input to a new stacked φ4 neural 
network to progressively extract 
features of increased abstraction

Eventually we obtain an 
architecture that is a universal 
approximator of a probability 

distribution.

Neural Networks
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Summary

1. Quantum field theories on graphs emerge naturally as machine learning algorithms. We are therefore 
able to investigate machine learning within quantum field theory

2. The work also overlaps with work in the mathematical foundations of quantum field theory. (Construction of 
quantum fields from Markoff fields, E. Nelson, J. Funct. Anal. 12, 97 (1973))

3. Lattice field theory is inherently a computational research field. Easy to implement quantum 
field-theoretic machine learning algorithms, to study them computationally, and to pursue applications.

4. Experimental implementations of machine learning based on quantum field theory? An interesting read: 
The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning, R. Bondesan, M. Welling, arXiv:2103.04913 (2021).
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