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Lattice QCD

Path integral representation in Euclidean space

Gauge configurations generated with Monte Carlo

Operator measurement on each gauge configuration

Quark propagators under gauge links



Two-point functions

● Spectrum study
● HVP part of Muon gm2 
● LBL part of Muon gm2 
● Parameters for form factors
● ...

Fourier transform of >300 momenta

Euclidean correlation functions in momentum space

Conserved vector current

Only finite #points

Most costly part



Current code status

A GPU solver for quark 
propagators might be enough 

to port the code

CPU code performance

48x96 solver Momenta apply Contraction

Cost (1728 CPUs, sec) 230 12 10

Quda library
M. A. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi
http://lattice.github.io/quda/

Everything fits into CPU cache
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Quda features

● Kernel Autotuning
● Supports latest algorithms development and most 

actions (Clover, twisted mass, Staggered fermion, 
Domain wall)

● Large user community and frequent updates

Staggered fermion solver performance

● Special program model
● More sophisticated memory management
● Avoid communication if possible
● Combine more jobs for each kernel call
● …...

M. A. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi



Interface

● C++ functions (Quda used mostly)could not be called directly from C in most cases
● No support of class/structure functions
● No support of templates

Naïve work around 

Current CPU code written in plain “C”

c.h
void do_quda_inv(void* qinv, void* res, void* src, double mass);

utils.h
extern "C" void do_quda_inv(void* qinv, void* res, void* src,double mass,)
{((quda_inverter*) qinv)->do_inv(res, src, mass, err, niter);}

utils.cpp #include "qlat_utils.h"
……..qinv.do_inv(…)…

nvcc -c utils.cpp -o utils.o

C side

● Layout of MPI and data
● Phase convention for stagged fermions
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C++ side
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Solver performance tuning
● Direct conjugate gradient (iterative solver) Critical slowing down

Reduce problem dimPreserve lowest eigenstate
Projective multigrid method for propagators in lattice gauge theory

Richard C. Brower, Claudio Rebbi, Ettore Vicari, Phys. Rev. D 43, 1965

Greatly reduce the number of iterations

Large Memory needed to obtain these vectors 

● Multi-grid

● Deflation



Solver performance tuning
Eigensystem solving under even-odd preconditioning

Scaling as with # of eigenvectors

The # of eigenvectors 
scale as the volume of 
La = physical volume



Eigensystem usage

● Mixed precision eigensystem

● 300 double precision vectors

● 700 single precision vectors

● Eigensystem solved from Krylov subspaces 

● Eigensytem compression? 

● Additional reduce of precision of 700 vectors
                          arXiv: 1710.06884 M. A. Clark, Chulwoo Jung, and Christoph Lehner
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Quda eigen Scaling 48x 64
ndouble 0
ndouble 50
ndouble 100
ndouble 200
ndouble 300
ndouble 500
ndouble 3000

● Normally will require triple or double the memory requirement

● ---- Solve the eigen vectors in advance and save them 

● ---- 1000 vectors need 160 GB memory > 2 node



Solver performance tuning

48x96 solver Momenta apply Contraction

Cost (4 GPUs, sec) 97.26 15143.36 175.74

Expensive

For each y, boost the FT into matrix product

Friendly to GPU due to large computation with low memory usage

~0.16 GB ~0.5 GB



Matrix product on GPU

● Order of ~1000 computation units
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Strong Scaling

Qlat Summit GPU float, 24x64
Qlat Summit GPU float, 32x64
Qlat Summit GPU float, 48x96

Dimension r on different node
● https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/
● https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
● https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

m ~ 100
r ~ 1e7
n ~ 300

Each unit control 
one (m, n)

● ~32 threads within each unit 
● (dm, dn) data load to shared memory to increase 

memory bandwidth usage

● Use template to reduce usage of “if” and dynamical 
“for” loop 

https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf


Performance

● Gain more by using GPU?

● ---Reduce momenta apply and contraction time

● Detect where the noise come from

48x96 solver Momenta apply Contraction

Cost (4 GPUs, sec) 97.26 259.04 175.74

Cost (1728 CPUs, sec) 230 12 10

CPUh GPUh

Charge 8966 / 170 = 50 39

Table of timing using mixed precision eigensystem and matrix product



Volume averaging (all-to-All low modes)

Split propagator into high-mode and low-mode part

Focus on low-mode and sum over all positions y (huge noise reduction)

Matrix productFast Fourier transform
~2000 x 2000

Vector shifts

H. Neff, N. Eicker, T. Lippert, J. W. Negele, and K. Schilling, Phys. Rev. D 64, 114509 (2001)
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Vector shift

Vec shift 
performancde 

GB/s
2 4 6 8 16 32 64

GPU double 53.59 53.59 53.59 27.17 26.04 11.03 17.61

CPU double 13.76 13.76 9.39 9.91 9.36 8.92 8.89

GPU A

CPU A

GPU B

CPU B

MPI Communication

Mem 
copy

Mem 
copy

Asynchronous Copy

Asynchronous communication

Asynchronous Copy



Fast Fourier transform (FFT)
● cuFFT (https://docs.nvidia.com/cuda/cufft/index.html similar to FFTW on CPU)  

● Only supports single GPU FFT
● Only supports 3D FFT

GPU 
(Glops/V100)

1 2 4 6 8 16 32 64

3D single 370.54 367.91 369.03 360.80 343.02 316.03 277.13 95.27

4D single 287.65 134.11 62.43 40.31 23.89 9.69 -- --

GPU A GPU B

Flops calculate Naïvely from V ln(V) X 8

L(0,8) x V(x,y,z) x T(0, 16), 3D L(0,8) x V(x,y,z) x T(16, 32), 3D

L(0,4) x V(x,y,z) x T(0, 32), 4D L(4,8) x V(x,y,z) x T( 0, 32) , 4D

https://docs.nvidia.com/cuda/cufft/index.html


Conclusions

● Porting of few parts of CPU code to GPU reached reasonable performance

● Basic tools porting such as matrix product and FFT have been done

● A complete code which shares the same algorithm between CPU and GPU  is 

desired and will be reached in near future



Thank You
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