Master-fields in lattice QCD

Patrick Fritzsch

in collaboration with M. Cè, M. Bruno, J. Bulava, A. Francis, J. Green, M. Hansen, M. Lüscher, A. Rago

> Comput.Phys.Commun. 255 (2020) 107355 e-Print: 1911.04533 [hep-lat]

æ

Lattice QCD on a slide

4D Euclidean space with gauge group ${\rm SU}(3)$ and $N_{\rm f}$ quark flavours:

$$\mathcal{L}^{QCD} = -\frac{1}{2g^2} \operatorname{Tr}[F_{\mu\nu}F_{\mu\nu}] + \sum_{i=1}^{N_{\mathrm{f}}} \overline{\psi}_i [\gamma_{\mu}D_{\mu} + m_i]\psi_i$$

$$= \text{ gauge invariant}$$

$$= N_{\mathrm{f}} + 1 \text{ free parameters} \left\{ \begin{array}{c} \text{strong coupling} & g^2 \\ \text{quark masses} & m_i, i = 1, \dots, N_{\mathrm{f}} \end{array} \right\} \text{ require physical input}$$

$$= \text{ Lattice regularization}$$

$$= \text{ lattice spacing } (a) \text{ and physical volume } (V_4 = L^4)$$

$$\rightarrow \text{ finite lattice } \Lambda$$

$$= \text{ gluons } U(x + a\hat{\mu}, x) \text{ on lattice links}$$

$$= \text{ a variety of lattice actions } \mathcal{S} = \mathcal{S}_{\mathrm{G}} + \mathcal{S}_{\mathrm{F}}$$

$$= \text{ E.g. Wilson fermion action in its improved form:}$$

$$\mathcal{S}_{\mathrm{W}} \equiv a^4 \sum_{x \in \Lambda} \overline{\psi}_x Q \psi_x , \qquad Q = \frac{1}{2} \gamma_{\mu} (\nabla^*_{\mu} + \nabla_{\mu}) - a \frac{1}{2} \nabla^*_{\mu} \nabla_{\mu} + M_0 + ac_{\mathrm{sw}} \frac{1}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}$$

E

The standard lattice QCD approach

Hybrid Monte-Carlo algorithm

- employs importance sampling
- draw conj. momenta π & integrate molecular dynamics (MD) equations (symplectic integrators)
- made exact by (global) Metropolis accept-reject step ($\Delta H = \Delta S$)
- ergodicity maintained by redrawing the momenta
- + various (Krylov) solvers, precondition techniques (eo, det-splitting, ...), multiple time-scales, ...

The master-field approach^[1]

"Stochastic locality" due to short-range interaction

- QCD field variables in distant regions fluctuate largely independent
- their distribution is everywhere the same (with periodic bc.)
- field-theoretical expectation value (O) from translation averages ((O)) of observables

$$\langle \mathcal{O}(x) \rangle = \langle \! \langle \mathcal{O} \rangle \! \rangle + O(N_V^{-1/2}) , \qquad \qquad \langle \! \langle \mathcal{O}(x) \rangle \! \rangle = \frac{1}{N_V} \sum_z \mathcal{O}(x+z)$$

provided localisation range of $\mathcal{O} \ll L$ (lattice extent)

Concept successfully applied to SU(3) YM theory.^[2]

Are we well prepared for very large simulations of QCD?

Critical aspects of lattice QCD simulations

Various choices (strongly) impact simulation cost and reliability of simulation.

Discretisation aspects		
gauge action	-	(impacts UV fluctuations)
fermion action		(lattice Dirac operator D)
spectral gap of $D \sim \lambda_{ m r}$	nin	(near zero-modes in MD evolution)
Algorithmic aspects		
update algorithm: Hybri	id Monte-Carlo	(exploration of phase space)
integration schemes an	d length	(symplectic)
numerical precision, e.g	g. in global sums (Metropolis step)	(double precision)
solver parameters		(stability & performance)
Physical aspects		

- coarse lattice spacings a promote large fluctuations of gauge field (roughness of fields U_i)
- small quark masses $m_{
 m ud}$ result in small eigenvalues of lattice Dirac operator ($\lambda_{
 m min}(m_{
 m ud})$)
- large number of sites $(L/a)^4$ increases risk for exceptional behaviour (e.g. from MD force)

Potential for algorithmic instabilities and precision issues. \Rightarrow Additional stability measures required.^[3]

Stabilising measures for QCD^[3]

A.Francis, P.F., M.Lüscher, A.Rago, Comput.Phys.Commun. 255 (2020) 107355

- new Wilson–Dirac operator
- stochastic molecular dynamics (SMD) algorithm^[4–7]
- solver stopping criteria

$$\|D\psi - \eta\|_2 \le \rho \|\eta\|_2$$
, $\|\eta\|_2 = \left(\sum_x (\eta(x), \eta(x))\right)^{1/2} \propto \sqrt{V}$

 \checkmark uniform norm $\|\eta\|_{\infty} = \sup_x \|\eta(x)\|_2$ V-independent

global accept-reject step

 $\Delta H \propto \epsilon^p \sqrt{V}$

(numerical precision must increase with V)

 \checkmark quadruple precision in global sums

well-established techniques

✓ Schwarz Alternating Procedure, local deflation, multi-grid, ... even-odd & mass-preconditioning, multiple time-scales, ...

_			
P	Eri	179	ch

New Wilson–Dirac operator

A.Francis, P.F., M.Lüscher, A.Rago, Comput.Phys.Commun. 255 (2020) 107355

$$D = \frac{1}{2}\gamma_{\mu}(\nabla^*_{\mu} + \nabla_{\mu}) - a\frac{1}{2}\nabla^*_{\mu}\nabla_{\mu} + \underline{M_0 + ac_{\mathrm{sw}}\frac{\mathrm{i}}{4}\sigma_{\mu\nu}\hat{F}_{\mu\nu}}$$

Even-odd preconditioning:

$$\hat{D} = D_{\rm ee} - D_{\rm eo} (\underline{D}_{\rm oo})^{-1} D_{\rm oe}$$

with diagonal part

 $(M_0 = 4 + m_0)$

$$D_{\rm ee} + D_{\rm oo} = M_0 + c_{\rm sw} \frac{\mathrm{i}}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \sim \left| M_0 \exp\left\{\frac{c_{\rm sw}}{M_0} \frac{\mathrm{i}}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right\} \right|$$

 \checkmark not protected from arbitrarily small eigenvalues small mass, rough gauge field, large lattice promote instabilities in $(D_{oo})^{-1}$

- valid Symanzik improvement
- guarantees invertibility

P. Fritzsch

New Wilson–Dirac operator

A clean comparison of fermion actions

- Impact best seen in pure gauge theory ($N_{\rm f}=0$, quenched). Ill-defined theory for fermionic observables.
- Different lattices $L/a \in \{16, 24, 32, 48\}$ and same gluon action ($\beta = 6.0$).
- pion correlator $G(t) \propto e^{-m_{\pi}t}$ at zero momentum, $m_{\pi} \approx 220 \,\mathrm{MeV}$

 \Rightarrow exceptional problems

Algorithmic improvements for stability

A.Francis, P.F., M.Lüscher, A.Rago, Comput.Phys.Commun. 255 (2020) 107355

- ergodic^[8] for sufficiently small ϵ (typically $\epsilon < 0.35$ vs. $\tau = 1 - 2$)
- exact algorithm
- significant reduction of unbounded energy violations $|\Delta H| \gg 1$
- a bit "slower" than HMC but compensated by shorter autocorrelation times
- smooth changes in ϕ_t , U_t improve update of deflation subspace

Check against standard Wilson action (CLS^[9-11]) $N_{\rm f} = 2 + 1$ published in [3]

10

Check against standard Wilson action (CLS^[9-11]) $N_{\rm f} = 2 + 1$ published in [3]

Using set of normal-sized lattices:

ID	$a/{ m fm}$	β	$T \cdot L^3$	$\frac{m_{\pi}}{\text{MeV}}$	$\frac{m_{\rm K}}{{ m MeV}}$	Lm_{π}	b.c.	status	$\langle P_{\rm acc} \rangle$	$R_{\rm spk}[\%]$
A_1	0.095	3.8	$96 \cdot 32^3$	410	410	6.3	Р	\checkmark	97.5%	0.19(10)
A_2			$96 \cdot 32^{3}$	294	458	4.5	Р	\checkmark	98.6%	0.19(10)
A_3			$96 \cdot 32^{3}$	220	478	3.4	Р	\checkmark	98.1%	0.10(7)
B_1	0.064	4.0	$96 \cdot 48^{3}$	410	410	6.4	Р	\checkmark	98.8%	0.0
C_1	0.055	4.1	$96 \cdot 48^{3}$	410	410	5.5	0	\checkmark	98.7%	0.0

 $\beta = 3.8$ SMD simulations:

 $(\gamma = 0.3, \epsilon = 0.31, 2 \text{-lv OMF-4}, N_{\text{pf}} \le 8, R_{\text{deg}} \le 10)$

Chiral trajectory of ϕ_4, t_0 :

P. Fritzsch

GDR QCD 2022, Orsav

11

크

1st dynamical master-field simulations

- M. Cé, M. Bruno, J. Bulava,
 A. Francis, P. F, J. Green, M. Lüscher,
 A. Rago, M. Hansen.
- $N_{\rm f} = 2 + 1 + {\rm stabilising measures}^{[3]}$

•
$$a = 0.095 \, \text{fm}, \, m_{\pi} = 270 \, \text{MeV}$$

openQCD-2.0^[12]
 60 Mch on superMUC-NG (PRACE)

1st dynamical master-field simulations

on superMUC-NG @ LRZ, Munich

Goal: show viability of master-field approach

2 master-field lattices at coarse lattice spacing $a = 0.095 \,\mathrm{fm}$

96⁴ (
$$L = 9 \, {\rm fm}$$
) at $m_{\pi} = 270 \, {\rm MeV} = 2 m_{\pi}^{{\rm phys}}$

• 192^4 ($L = 18 \, \text{fm}$) at $m_\pi \le 270 \, \text{MeV}$

Follow well-established thermalisation strategy:

- start from smaller lattices + periodically extend one direction at a time
- adapt algorithmic parameters as needed
- iterate

for

starting from A_2 lattice ($m_{\pi} = 294 \,\mathrm{MeV}$):

change hopping parameter to target and twisted-mass $\mu_0 = 0$

The wave lie of ions on other	lattice	#cores	$t_{\rm SMD}[\rm sec]$	$t_{\rm MDU}[m sec]$	Mcore-h	MDU
	96×32^{3}	$16 \cdot 48$	246	794	0.03	155
mermalisation cost	$96^{2} \times 32^{2}$	$48 \cdot 48$	277	1108	0.09	125
for 1st master-field:	$96^{3} \times 32$	$64 \cdot 48$	672	2800	0.42	176
	96^{4}	$128 \cdot 48$	1080	5020	1.77	206
	total:				2.31	662

E

Monitoring observables (thermalisation)

96⁴: a = 0.095 fm, $m_{\pi} = 270$ MeV, $Lm_{\pi} = 12.5$ (L = 9 fm)

Simulations without TM-reweighting:

- no spikes in ΔH
- $\langle e^{-\Delta H} \rangle = 1$ within errors
- acceptance rate 98% or higher
- checked that $\sigma(\hat{D}_s) \in [r_a, r_b]$ of Zolotarev rational approximation
- adapt solver tolerances to exclude statistically relevant effects of numerical inaccuracies
- autocorrelation times: 20-30 MDU
- std.-deviation σ_W of strange-quark "reweighting factors" within strict bound

$$\frac{\sigma_W}{\langle W\rangle} \leq 0.1$$

to guarantee unbiased results

1st dynamical master-field simulations 192⁴ : $a = 0.095 \text{ fm}, m_{\pi} = 270 \text{ MeV}, Lm_{\pi} = 25 (L = 18 \text{ fm})$

Obstacle:

very large physical volumes (periodic b.c.) still promote issues (at least at coarse lattice spacing) they could always be solved through restarts so far

We observe

- deflated solver fails occasionally for the little Dirac op.
- spikes in ΔH
- no. of such events increases with larger V and smaller m_{π}
- origin unknown (multiple sources?)

Mitigation strategy?

- require better understanding of the problem (algorithmic and/or physical origin?)
- use fallback-solver (less performat)

E

Master-field simulations

Study deflation subspace ($a = 0.095 \, \text{fm}$)

Small/Large eigenvalue spectrum of eo-preconditioned DFL operator Awhat on A-lattices (96×32^3):

P Fritzsch

GDR QCD 2022, Orsav

Upgrade of openQCD

to support multilevel deflation in version 2.0.2

Solution: Multilevel deflation

- effectively results in a preconditioning of the std. little Dirac op.
- introduce stack of deflation subspaces (block grid levels $0 \le k \le k_{\max}$)
- little Dirac ops. at block-level k: $A_k = P_k A_{k-1} P_k = P_k D P_k$
- derived from the same set of global low modes $\{\psi_1, \cdots, \psi_{N_s}\}$ (at top level, k_{\max})
- especially large lattices profit from additional levels (smaller cost)
- projection/lifting now implemented in double precision for stability (larger cost)

alisation cost:	lattice	#cores	$\bar{t}_{\rm SMD}[{ m sec}]$	$\bar{t}_{MDU}[h]$	Mcore-h	MDU
	192×96^{3}	$128 \cdot 48$	2740	794	2.32	95
	$192^2 \times 96^2$	$256 \cdot 48$	3080	4.73	2.54	45
	$192^{3} \times 96$	$512 \cdot 48$	3190	5.34	4.49	35
	192^{4}	$768\cdot 48$	4789	9.71	35.12	102
	total:				44.47	277

3

Hadronic observables

Hadron propagators E.g. meson 2-pt function (like pion propagator): $C_{\Gamma\Gamma'}(x) = -\text{Tr}\{\Gamma\gamma_5 D^{-1}(x,0)\gamma_5\Gamma'D^{-1}(x,0)\}, \qquad ||D^{-1}(x,0)|| \sim e^{-m|x|/2}$ with localisation range 1/m

Asymptotic form of position-space correlators analytically known when a = 0 $(T, L = \infty)$. For $|x| \to \infty$:

$$C_{\rm PP}(x) \to \frac{|c_{\rm P}|^2}{4\pi^2} \frac{m_{\rm P}^2}{|x|} K_1(m_{\rm P}|x|) ,$$

$$C_{\rm NN}(x) \to \frac{|c_{\rm N}|^2}{4\pi^2} \frac{m_{\rm N}^2}{|x|} \left[K_1(m_{\rm N}|x|) + \frac{\cancel{p}}{|x|} K_2(m_{\rm N}|x|) \right]$$

axis/off-axis directions will have different cutoff effects

consider the correlator averaged over 4D spheres of radius r = |x|:

$$\overline{C}(r) = \frac{1}{\mathsf{r}_4((r/a)^2)} {\sum}_{|x|=r} C(x)$$

Hadronic observables

On test-ensemble 96×64^3 , a = 0.095 fm

Hadronic observables

Hot off the press: master-field 192^4 , a = 0.095 fm

$N_{\rm f}=2+1$ Stabilised WF for physics

- core team: F.Cuteri, A. Francis, P.F, K. Orginos, A. Rago, A. Shindler, A. Walker-Loud, *S. Zafeiropoulos*
- implements new action & stabilising measures^[13]
- various lattices {a/L, β, m_π} to complement master-field simulations

to be shared

Summary & perspectives

Master-fields require stabilising measures

- modified fermion action (improvement term)
- stochastic Molecular dynamics (SMD) algorithm
- uniform norm & quadruple precision
- multilevel deflation

So far:

- stabilising measures (action, SMD, ...) work excellent, especially at coarse lattice spacing \checkmark
- -96^4 , 192^4 (a = 0.095 fm) and 144^4 (a = 0.065 fm) master-field ready for physics applications \checkmark
- master-field approach not compatible with reweighting techniques X
- very large volumes like $(18 \, {\rm fm})^4$ still challenging but doable (or $m_{\pi}^{\rm phys}$) \checkmark
- position-space correlators can be used to extract hadron masses

Ongoing:

- We just start to uncover new possibilities.
- exploration of physical calculations & benchmarking
- continuum limit scaling behaviour
- master-fields: natural setup to study spectral reconstruction
- complementary large-scale lattice simulations (openLAT)

E

æ

Master-field simulations

Thermalising 192^4 ($a = 0.094 \, \text{fm}, m_{\pi} = 270 \, \text{MeV}$) at LRZ using 768 nodes (36864 cores)

openQCD-2.0.2: multilevel DFL solver (full double prec.)

```
SMD parameters:
actions = 0 1 2 3 4 5 6 7 8
npf = 8
mu = 0.0 \ 0.0012 \ 0.012 \ 0.12 \ 1.2
nlv = 2
gamma = 0.3
eps = 0.137
iacc = 1
Rational 0:
degree = 12
range = [0.012, 8.1]
Level 0:
4th order OMF integrator
Number of steps = 1
Forces = 0
Level 1:
4th order OMF integrator
Number of steps = 2
Forces = 1 2 3 4 5 6 7 8
Cost:
           0.33 Mch / MDU
                                           10 Mch / indep. cnfg
                                  =>
```

```
Update cvcle no 48
dH = -1.4e - 02, iac = 1
Average plaquette = 1.708999
Action 1: <status> = 0
Action 2: <status> = 0 [0.0|0.0]
Action 3: < status > = 0 [0.0|0.0]
Action 4: < status > = 0 [0.0|0.0]
Action 5: <status> = 2 [5.2]7.6]
Action 6: <status> = 271
Action 7: <status> = 21 [3.2]5.3]
Action 8: <status> = 22 [3.2]5.3]
Field 1: <status> = 139
Field 2: <status> = 31 [3.2]6.4]
Field 3: <status> = 38 [5,3|8,7]
Field 4: <status> = 33 [5,2|7,6]
Field 5: <status> = 267
Field 6: <status> = 26 [3,2|5,3]
Field 7: <status> = 24 [3,2|5,3]
Force 1: <status> = 91
Force 2: <status> = 22 [3,2|6,4];23 [3,2|5,4]
Force 3: <status> = 28 [5,3|7,6];30 [5,3|7,6]
Force 4: <status> = 29 [5,2|7,6];32 [5,2|7,6]
Force 5: <status> = 28 [5,2|7,5];30 [5,2|7,6]
Force 6: <status> = 303
Force 7: <status> = 22 [3,2|5,3];23 [3,2|5,3]
Force 8: <status> = 23 [3,2|5,3];26 [3,2|5,3]
Modes 0: <status> = 0,0|0,0
Modes 1: <status> = 4,2|5,5 (no of updates = 4)
Acceptance rate = 1.000000
Time per update cycle = 4.34e+03 sec (average = 4.38e+03 sec)
                         30 Mch / 3 indep. master-fields
                 =>
```

E

Towards large scale simulations

How does the lowest eigenvalue distribution scale with quark mass?

 $m_{\pi} = 294 \,\mathrm{MeV}, \, m_{\pi}L = 4.5$

$$m_{\pi} = 220 \,\mathrm{MeV}, \, m_{\pi}L = 3.4$$

(historical data missing for detailed comparison)

Overall behaviour of smallest eigenvalue

- $a\lambda = \min\left\{\operatorname{spec}(D_u^{\dagger}D_u)^{1/2}\right\}$ $(a\lambda = 0.001 \sim 2 \operatorname{MeV})$
- \blacksquare median $\mu \propto Zm$
- width σ decreases with m
- somewhat similar to N_f = 2 case^[14] (unimproved Wilson)
- (non-)Gaussian ?

empirical:^[14]
$$\sigma \simeq a/\sqrt{V}$$

Bibliography I

- M. Lüscher, Stochastic locality and master-field simulations of very large lattices, EPJ Web Conf. 175 (2018) 01002, [1707.09758].
- [2] L. Giusti and M. Lüscher, Topological susceptibility at T > T_c from master-field simulations of the SU(3) gauge theory, Eur. Phys. J. C 79 (2019) 207, [1812.02062].
- [3] A. Francis, P. Fritzsch, M. Lüscher and A. Rago, Master-field simulations of O(a)-improved lattice QCD: Algorithms, stability and exactness, Comput. Phys. Commun. 255 (2020) 107355, [1911.04533].
- [4] A. M. Horowitz, Stochastic Quantization in Phase Space, Phys. Lett. 156B (1985) 89.
- [5] A. M. Horowitz, The Second Order Langevin Equation and Numerical Simulations, Nucl. Phys. B280 (1987) 510.
- [6] A. M. Horowitz, A Generalized guided Monte Carlo algorithm, Phys. Lett. B268 (1991) 247–252.
- K. Jansen and C. Liu, Kramers equation algorithm for simulations of QCD with two flavors of Wilson fermions and gauge group SU(2), Nucl. Phys. B453 (1995) 375–394, [hep-lat/9506020]. [Erratum: Nucl. Phys.B459,437(1996)].
- [8] M. Lüscher, Ergodicity of the SMD algorithm in lattice QCD, unpublished notes (2017). http://luscher.web.cern.ch/luscher/notes/smd-ergodicity.pdf.
- [9] M. Bruno, D. Djukanovic, G. P. Engel, A. Francis, G. Herdoíza et al., Simulation of QCD with N_f = 2 + 1 flavors of non-perturbatively improved Wilson fermions, JHEP 1502 (2015) 043, [1411.3982].
- [10] G. S. Bali, E. E. Scholz, J. Simeth and W. Söldner, *Lattice simulations with* $N_f = 2 + 1$ *improved Wilson fermions at a fixed strange quark mass, Phys. Rev.* D94 (2016) 074501, [1606.09039].
- [11] M. Bruno, T. Korzec and S. Schaefer, Setting the scale for the CLS 2 + 1 flavor ensembles, Phys. Rev. D95 (2017) 074504, [1608.08900].
- [12] M. Lüscher, openQCD, .https://luscher.web.cern.ch/luscher/openQCD/index.html.
- [13] F. Cuteri, A. Francis, P. Fritzsch, G. Pederiva, A. Rago, A. Shindler et al., Properties, ensembles and hadron spectra with Stabilised Wilson Fermions, in 38th International Symposium on Lattice Field Theory, 1, 2022. 2201.03874.
- [14] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices. II. DD-HMC simulations and data analysis, JHEP 0702 (2007) 082, [hep-lat/0701009].