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 From particle physics to branching processes

 Genealogy of particles ending up beyond a predefined position

 An exact Monte Carlo algorithm to generate the tip of BRWs at large times
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Hadron-nucleus scattering amplitudes: a FKPP problem

Right-moving hadron at rapidity y (~ log of energy)

Large nucleus 
at rest

What is the probability that an interaction occurs?

When it interacts with the nucleus, the latter breaks and new particles are seen in the detector (in 

general, many, covering a large solid angle around the flight direction of the initial hadron).
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r
0

Let us consider the simplest hadron: a quark-antiquark pair (= meson)

Characterized by a distance scale R

Characterized by a two-dimensional size vector r
0

Large nucleus 
at rest

R

T ( r0 , y=0)=Θ(|r0|−R)

∂y T(r0 , y )=ᾱ∫
d2r 1

2 π

r0
2

r1
2
(r 0−r1)

2 [T (r 1 , y )+T( r0−r1 , y )−T(r0 , y )−T (r1 , y )T (r0−r 1 , y)]

An equation for the probability (amplitude) has been derived from QCD
(Balitsky, 1996; Kovchegov, 1999).

It takes the form of an evolution equation in the rapidity y

which is actually ‘‘FKPP-like’’ i.e. in the same universality class as   ∂tu( t , x)=
1
2
∂ x

2u (t , x )+u( t , x)[1−u( t , x)]



  

Hadron-nucleus scattering amplitudes: a FKPP problem

r
0

Let us consider the simplest hadron: a quark-antiquark pair (= meson)

Characterized by a distance scale R

Characterized by a two-dimensional size vector r
0

Large nucleus 
at rest

R

T ( r0 , y=0)=Θ(|r0|−R)

∂y T(r0 , y )=ᾱ∫
d2r 1

2 π

r0
2

r1
2
(r 0−r1)

2 [T (r 1 , y )+T( r0−r1 , y )−T(r0 , y )−T (r1 , y )T (r0−r 1 , y)]

An equation for the probability (amplitude) has been derived from QCD
(Balitsky, 1996; Kovchegov, 1999).

It takes the form of an evolution equation in the rapidity y

which is actually ‘‘FKPP-like’’ i.e. in the same universality class as   ∂tu( t , x)=
1
2
∂ x

2u (t , x )+u( t , x)[1−u( t , x)]

We are going to interpret this equation physically.
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Hadron-nucleus scattering amplitudes: a FKPP problem

r
0

Actually, the hadron is ‘‘seen’’ from the nucleus in an actual quark-antiquark 
state only if it is very slow (rapidity y ≈ 0), namely almost at rest.

Interaction probability (amplitude): 
T = 1  if  |r

0
| > R 

T = 0  else

Large nucleus 
at rest

R

meson
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In general, the bare state is ‘‘dressed’’ by quantum fluctuations, 
essentially in the form of additional gluons

The gluon can be thought of as been radiated by the quark or the 
antiquark as the rapidity increases by dy.
 
The probability of a branching is computed from QCD:

ᾱ dy
d2 r1

2π

r 0
2

r1
2
( r0−r1)

2

Interaction probability (amplitude): 
T = 1  if  |r
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| or |r

0
-r

1
| > R 

T = 0  else

coupling constant
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Hadron-nucleus scattering amplitudes: a FKPP problem

r
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r
0
-r

1

r
1
-r

2

The gluons may also branch into other gluons with the same probability 
function

Interaction probability (amplitude): 
T = 1  if at least one size > R 
T = 0  else

r
2

ᾱ dy
d2 r2

2π

r1
2

r 2
2
(r1−r2)

2

Large nucleus 
at rest

R

coupling constant

meson



  

Hadron-nucleus scattering amplitudes: a FKPP problem

r
0

Interaction probability (amplitude): 
T = 1  if at least one size > R 
T = 0  else

These branchings are iterated up to the scattering rapidity to 
construct the state of the meson

Large nucleus 
at rest

R...
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Hadron-nucleus scattering amplitudes: a FKPP problem

r
0

T ( r0 , y=0)=Θ(|r0|−R)

∂y T(r0 , y )=ᾱ∫
d2r 1

2 π

r0
2

r1
2
(r 0−r1)

2 [T (r 1 , y )+T( r0−r1 , y )−T(r0 , y )−T (r1 , y )T (r0−r 1 , y)]

The Balitsky-Kovchegov equation
 

is now understood as an equation for the probability that there is at least one object of size larger than R 
produced by the branching process iterated to rapidity y. 

Interaction probability (amplitude): 
T = 1  if at least one size > R 
T = 0  else

These branchings are iterated up to the scattering rapidity to 
construct the state of the meson

Large nucleus 
at rest

R...

meson



  

A genealogy problem in high-energy scattering

r
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Large nucleus 
at rest
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Surprising experimental fact: There is a significant fraction of 
events in which the nucleus stays intact, and there is no particle 
at all in some angular sector → called ‘‘diffractive events’’

Void angular 
sector; size 
characterized 
by a rapidity 
variable y
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A genealogy problem in high-energy scattering

Define T
in
 as follows:  for  y=y

0 
, T in( r0 , y0; y0)=2T( r0 , y0)−T2( t0 , y0)

1
2 T( r0 , Y)

∂
∂ y0

T in( r0 , Y ; y0)

and for y>y
0
:

∂y T in( r0 , y ;y0)=ᾱ∫
d2 r1

2 π

r0
2

r1
2
( r0−r1)

2 [ Tin( r1, y ; y0)+T in(r 0−r1, y ; y0)−T in( r0 , y ;y0)−T in(r1 , y ;y0)T in(r 0−r1 , y ; y0)]

Equation established in QCD for the distribution of this angle (Kovchegov, Levin, 2001):
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2 [ Tin( r1, y ; y0)+T in(r 0−r1, y ; y0)−T in( r0 , y ;y0)−T in(r1 , y ;y0)T in(r 0−r1 , y ; y0)]

Equation established in QCD for the distribution of this angle (Kovchegov, Levin, 2001):

Interpretation: T
in
 turns out to be twice the probability that the objects of size larger than R at rapidity y 

had an odd number of ancestors at rapidity Y-y
0

r
0
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at rest

R
Surprising experimental fact: There is a significant fraction of 
events in which the nucleus stays intact, and there is no particle 
at all in some angular sector → called ‘‘diffractive events’’
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sector; size 
characterized 
by a rapidity 
variable y

0

The distribution of y
0
 reads
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A class of observables on branching processes

X

mT

TT

We consider realizations of the one-dimensional BBM such that the 
initial particle at position x=0 has its rightmost offspring at a 
position larger than X (i.e. it is ‘‘red’’, by definition) at the final time 
T.
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A class of observables on branching processes

X

mT

TT

1≪X−mT≪√T

We always take T large, and choose X such that

Expected position of the lead 
particle at T

What are the properties of this subtree?

∂t u( t , x)=
1
2
∂ x

2u (t , x )+u( t , x)[1−u( t , x)]

Our BBM is such that the proba u(t,x) that the lead particle has 

position larger than x at time t obeys the FKPP equation in the form:

u( t=0 , x )=Θ(−x)

We consider realizations of the one-dimensional BBM such that the 
initial particle at position x=0 has its rightmost offspring at a 
position larger than X (i.e. it is ‘‘red’’, by definition) at the final time 
T.



  

Genealogies: two formulas

tLCA

Distribution of the branching time of the last common 
ancestor of all red particles

q=
tLCA
T

Probability density of the overlap 

π (q)≃
1

2√πT
1

q3 /2
(1−q )3/2

Le, Mueller, SM, Phys.Rev. D 103 (2021) 054031

This is the same formula as for the distribution of the overlaps of 
two extremal particles in unconditioned BBM conjectured by 
Derrida & Mottishaw, EPL, 115 (2016) 40005  

X

mT

T



  

Genealogies: two formulas

tLCA

Distribution of the branching time of the last common 
ancestor of all red particles

q=
tLCA
T

Probability density of the overlap 

π (q)≃
1

2√πT
1

q3 /2
(1−q )3/2

Le, Mueller, SM, Phys.Rev. D 103 (2021) 054031

This is the same formula as for the distribution of the overlaps of 
two extremal particles in unconditioned BBM conjectured by 
Derrida & Mottishaw, EPL, 115 (2016) 40005  

X

mT

Distribution of the number of red particles at a given time

Probability to have k red particles at t
0
 given there is at least one:

rk≥2(t 0)≃(
1

√π(T−t 0)
+

1

√2(X−mT ) )
1

k (k−1)

Le, Mueller, SM, Phys.Rev. D 104 (2021) 034026t 0 T



  

Formulation using a generating function

Qk ( t , x ; t 0)

Uλ ( t , x ; t 0)=1−∑k
λ kQk (t , x ; t 0)

v (t , x )=U λ (t 0−t , x ; t 0) v (0 , x)=(1−λ)U (t 0 , x)

Call                      the probability that the particle at x at time t has k red offspring at time t
0
:

Generating function:

Fact:                                           obeys the FKPP equation with initial condition 

rk (t 0)=
Q k (0,0 ; t 0)

U (0,0)

There is also a probabilistic method: it requires however to use the phenomenological model for BBM [see 
Brunet, Derrida, Mueller, SM (2005); Mueller, SM (2014)] 

U (t , x)=u(T−t , X−x )Probability that a particle at x at time t is red:

Hence our observables may be deduced from a solution to the FKPP equation with peculiar initial 
conditions. It amounts to computing a shift of the large-time position of the TW due to the initial 
conditions.



  

Outline

 From particle physics to branching processes

 Genealogy of particles ending up beyond a predefined position

 An exact Monte Carlo algorithm to generate the tip of BRWs at large times



  

Numerical methods
It is convenient to be able to compute numerically the observables we aim at understanding: to 
build up an intuition, and eventually to check analytical formulas.
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● For some observables (e.g. the overlap), the best method is to solve the evolution equation for the generating 
function (or its discretized version)

● For observables such as r
k
 for k not small, or for observables dominated by typical realizations, it is 

impractical to extract the information from a generating function (require the numerical evaluation of e.g. high-
order derivatives)

Monte Carlo simulations are indicated for such observables!

It is convenient to be able to compute numerically the observables we aim at understanding: to 
build up an intuition, and eventually to check analytical formulas.



  

Numerical methods

● For some observables (e.g. the overlap), the best method is to solve the evolution equation for the generating 
function (or its discretized version)

● For observables such as r
k
 for k not small, or for observables dominated by typical realizations, it is 

impractical to extract the information from a generating function (require the numerical evaluation of e.g. high-
order derivatives)

Monte Carlo simulations are indicated for such observables!

It is convenient to be able to compute numerically the observables we aim at understanding: to 
build up an intuition, and eventually to check analytical formulas.

But our observables use ensembles of rare realizations, evolved to large times… a ‘‘naive’’ implementation 
would clearly be unuseful.

On the other hand, we only care about the particles that arrive near the extremal one.

Is there a way to evolve exactly only these particles?



  

Realization of the tail of a BBM

T=50

 

Conditioning: at least one particle beyond X (far from m
T
)

Keep all particles arriving in [X-Δ,+∞)

We can go to much larger times!  [Currently, T=O(10000)]

(actually BRW)

Brunet, Le, Mueller, SM, EPL, 131 (2020) 40002

mT



  

A simple branching random walk
Consider a set of particles on a lattice in space and time, with respective spacing dx and dt
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Probability p
l Probability r pr+ p l+r=1



  

A simple branching random walk
Consider a set of particles on a lattice in space and time, with respective spacing dx and dt

Each particle evolves in time through 3 elementary processes:

Probability p
r

Probability p
l Probability r

u( t+dt , x)=pru (t , x−dx)+ p lu (t , x+dx)+r u (t , x )[2−u(t , x)] u( t=0 , x )=Θ(−x)

Start with a single particle at the origin.

The probability that the rightmost particle has a position larger than x at time t satisfies

pr+ p l+r=1

U (t , x)=u(T−t , X−x )The probability that the particle at x at time t is red reads



  

Algorithm

Consider generically one particle at position x at time t.

Evolution of the red particles
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Consider generically one particle at position x at time t.

Between times t  and t+dt, it may

move: ● Proba that it is red and that it jumps right:

Proba that it jumps right given that it is red:

● Proba that it jumps left given that it is red:

branch:

P(r ; red)=prU (t+dt , x+dx)

P(r | red)=pr
U ( t+dt , x+dx )

U (t , x )
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Algorithm

Consider generically one particle at position x at time t.

Between times t  and t+dt, it may

move: ● Proba that it is red and that it jumps right:

Proba that it jumps right given that it is red:

● Proba that it jumps left given that it is red:

branch: ● Proba that it branches into two red given that it is red:

P(r ; red)=prU (t+dt , x+dx)

P(r | red)=pr
U ( t+dt , x+dx )

U (t , x )

P(l | red)=pl
U (t+dt , x−dx)

U (t , x )

P(2 red | red)=r
[U (t+dt , x )]2

U (t , x )

Evolution of the red particles



  

Algorithm

Consider generically one particle at position x at time t.

Between times t  and t+dt, it may

move: ● Proba that it is red and that it jumps right:

Proba that it jumps right given that it is red:

● Proba that it jumps left given that it is red:

branch: ● Proba that it branches into two red given that it is red:

● Proba that it branches into one red and one non-red given that it is red:

P(r ; red)=prU (t+dt , x+dx)

P(r | red)=pr
U ( t+dt , x+dx )

U (t , x )

P(l | red)=pl
U (t+dt , x−dx)

U (t , x )

P(2 red | red)=r
[U (t+dt , x )]2

U (t , x )

P(red+non-red | red)=r
2U ( t+dt , x) [1−U (t+dt , x)]

U (t , x )

Evolution of the red particles

In this case, the nothing actually happens to the red particle.



  

Algorithm
Evolution of the orange particles

Definitions:  A particle is orange if it has its rightmost offspring in [X-Δ,X) at time T.

Definitions:  A particle is blue if it has its rightmost offspring in (-∞,X-Δ) at time T.



  

Algorithm
Evolution of the orange particles

V Δ (t , x )=U (t , x+Δ)−U (t , x )The probability that the particle at x at time t is orange reads

Definitions:  A particle is orange if it has its rightmost offspring in [X-Δ,X) at time T.

Definitions:  A particle is blue if it has its rightmost offspring in (-∞,X-Δ) at time T.



  

Algorithm

Orange particles are created from branching of red particles

Evolution of the orange particles

V Δ (t , x )=U (t , x+Δ)−U (t , x )The probability that the particle at x at time t is orange reads

Definitions:  A particle is orange if it has its rightmost offspring in [X-Δ,X) at time T.

Definitions:  A particle is blue if it has its rightmost offspring in (-∞,X-Δ) at time T.

P(red+orange | red )=r
2U (t+dt , x)V Δ( t+dt , x )

U (t , x )



  

Algorithm

Orange particles are created from branching of red particles

Moves: Proba that it jumps right or left given that it is or left:

the same as for the red particles, with the substitution  

Branchings: ● Proba that it branches in two orange given that it is orange:

The same as for the red particles, with the substitution 

● Proba that it branches in one orange and one blue given that it is orange:

P(orange+blue | orange )=r
2V Δ(t+dt , x )[1−U (t+dt , x+Δ)]

V Δ(t , x)

Evolution of the orange particles

V Δ (t , x )=U (t , x+Δ)−U (t , x )The probability that the particle at x at time t is orange reads

U→V Δ

U→V Δ

Definitions:  A particle is orange if it has its rightmost offspring in [X-Δ,X) at time T.

Definitions:  A particle is blue if it has its rightmost offspring in (-∞,X-Δ) at time T.

P(red+orange | red )=r
2U (t+dt , x)V Δ( t+dt , x )

U (t , x )



  

Numerical check of the formula for r
k

rk≥2(t 0)≃(
1

√π(T−t 0)
+

1

√2(X−mT) )
1

k (k−1)

T=4000 , X−mT=30 , T−t 0=200

k=2

k=3

k=14

A
rb

itr
a

ry
 u

ni
ts



  

Continuous limit and variants

pr=pl=
1
2
(1−dt) , r=dt , dx2

=dt , dt→0

We find that the subtree of red particles is a (unconditioned)  BBM with drift ∂x lnU ( t , x)

and branching rate U (t , x)

∂t u( t , x)=
1
2
∂ x

2u (t , x )+u( t , x)[1−u( t , x)]



  

Continuous limit and variants

pr=pl=
1
2
(1−dt) , r=dt , dx2

=dt , dt→0

We find that the subtree of red particles is a (unconditioned)  BBM with drift ∂x lnU ( t , x)

and branching rate U (t , x)

We may ask the lead particle at time T to be at X exactly.

Then the drift becomes

The trajectory of the red particle probably coincides with the spine.

∂x ln ∂ xU ( t , x)

∂t u( t , x)=
1
2
∂ x

2u (t , x )+u( t , x)[1−u( t , x)]
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n̄(Δ) ∝ e√2Δ

ntypical (Δ) ∝ exp (√2Δ−ζ Δ
2 /3 )

Undetermined constant 1≪X−mT≪√T
X−Δ−mT≫1 , Δ≫1

mT



  

Other uses of the algorithm: one example

Number of orange particles when the position 

of the lead particle is fixed (NB: for the BBM)

n̄(Δ) ∝ e√2Δ

ntypical (Δ) ∝ exp (√2Δ−ζ Δ
2 /3 )

Undetermined constant

Formulas obtained from a very, very laborious 
calculation based on a generating function 
(Mueller, SM, Phys.Rev. E, 2020), following a 
formulation of such problems due to Brunet & 
Derrida (2011).

NB: This formula can be recovered from a 
probabilistic picture, in a more straightforward 
way… maybe probabilists will be able to 
determine the unknown constant?

Mueller & SM, Phys.Rev. E 102 (2020) 022104

1≪X−mT≪√T
X−Δ−mT≫1 , Δ≫1

mT



  

Numerical check of ntypical
n̄

∼e−ζΔ
2/3

Preliminary

Δ2/3



  

Summary

● Branching processes are found in the formulation of hadronic scattering observables at very 
high energies. ‘‘FKPP math’’ is relevant in this context.

● We have proposed heuristic expressions for properties of particles near the tip of a BRW, 
and an exact Monte Carlo algorithm to generate the tip.



  

Summary

● Branching processes are found in the formulation of hadronic scattering observables at very 
high energies. ‘‘FKPP math’’ is relevant in this context.

● We have proposed heuristic expressions for properties of particles near the tip of a BRW, 
and an exact Monte Carlo algorithm to generate the tip.

Outlook
● Try to understand the full genealogy of the subtree of red particles?

● Understand more completely the density of particles at the tip, possibly in the stochastic 
picture, which is more ‘‘physical’’?
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