Properties of the tip of one-dimensional branching random walks: analytical and numerical results, and motivations from QCD

Stéphane Munier
Centre de physique théorique
École polytechnique, CNRS, IP Paris, France

OnNS

Outline

文 From particle physics to branching processes

* Genealogy of particles ending up beyond a predefined position

头 An exact Monte Carlo algorithm to generate the tip of BRWs at large times

Work reported here done in collaboration with A.H. Mueller, É. Brunet, A.D. Le

Hadron-nucleus scattering amplitudes

Hadron-nucleus scattering amplitudes

Right-moving hadron at rapidity y (~ log of energy)

When it interacts with the nucleus, the latter breaks and new particles are seen in the detector (in general, many, covering a large solid angle around the flight direction of the initial hadron).

Hadron-nucleus scattering amplitudes

When it interacts with the nucleus, the latter breaks and new particles are seen in the detector (in general, many, covering a large solid angle around the flight direction of the initial hadron).

What is the probability that an interaction occurs?

Hadron-nucleus scattering amplitudes: a FKPP problem

Let us consider the simplest hadron: a quark-antiquark pair (= meson) Characterized by a two-dimensional size vector r_{0}

Hadron-nucleus scattering amplitudes: a FKPP problem

Let us consider the simplest hadron: a quark-antiquark pair (= meson) Characterized by a two-dimensional size vector r_{0}

An equation for the probability (amplitude) has been derived from QCD (Balitsky, 1996; Kovchegov, 1999).

Large nucleus at rest

R

It takes the form of an evolution equation in the rapidity y

$$
\begin{aligned}
& \partial_{\mathrm{y}} \mathrm{~T}\left(\mathrm{r}_{0}, \mathrm{y}\right)=\bar{\alpha} \int \frac{\mathrm{d}^{2} \mathrm{r}_{1}}{2 \pi} \frac{\mathrm{r}_{0}^{2}}{\mathrm{r}_{1}^{2}\left(\mathrm{r}_{0}-\mathrm{r}_{1}\right)^{2}}\left[\mathrm{~T}\left(\mathrm{r}_{1}, \mathrm{y}\right)+\mathrm{T}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y}\right)-\mathrm{T}\left(\mathrm{r}_{0}, \mathrm{y}\right)-\mathrm{T}\left(\mathrm{r}_{1}, \mathrm{y}\right) \mathrm{T}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y}\right)\right] \\
& \mathrm{T}\left(\mathrm{r}_{0}, \mathrm{y}=0\right)=\Theta\left(\left|\mathrm{r}_{0}\right|-\mathrm{R}\right)
\end{aligned}
$$

which is actually "FKPP-like" i.e. in the same universality class as $\partial_{t} u(t, x)=\frac{1}{2} \partial_{x}^{2} u(t, x)+u(t, x)[1-u(t, x)]$

Hadron-nucleus scattering amplitudes: a FKPP problem

Let us consider the simplest hadron: a quark-antiquark pair (= meson) Characterized by a two-dimensional size vector r_{0}

An equation for the probability (amplitude) has been derived from QCD (Balitsky, 1996; Kovchegov, 1999).

Large nucleus at rest

R

It takes the form of an evolution equation in the rapidity y

$$
\begin{aligned}
& \partial_{\mathrm{y}} \mathrm{~T}\left(\mathrm{r}_{0}, \mathrm{y}\right)=\bar{\alpha} \int \frac{\mathrm{d}^{2} \mathrm{r}_{1}}{2 \pi} \frac{\mathrm{r}_{0}^{2}}{\mathrm{r}_{1}^{2}\left(\mathrm{r}_{0}-\mathrm{r}_{1}\right)^{2}}\left[\mathrm{~T}\left(\mathrm{r}_{1}, \mathrm{y}\right)+\mathrm{T}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y}\right)-\mathrm{T}\left(\mathrm{r}_{0}, \mathrm{y}\right)-\mathrm{T}\left(\mathrm{r}_{1}, \mathrm{y}\right) \mathrm{T}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y}\right)\right] \\
& \mathrm{T}\left(\mathrm{r}_{0}, \mathrm{y}=0\right)=\Theta\left(\left|\mathrm{r}_{0}\right|-\mathrm{R}\right)
\end{aligned}
$$

which is actually "FKPP-like" i.e. in the same universality class as $\partial_{t} u(t, x)=\frac{1}{2} \partial_{x}^{2} u(t, x)+u(t, x)[1-u(t, x)]$
We are going to interpret this equation physically.

Hadron-nucleus scattering amplitudes: a FKPP problem

Large nucleus
at rest
R

Hadron-nucleus scattering amplitudes: a FKPP problem

meson

Large nucleus
at rest
R

Interaction probability (amplitude):

$$
T=1 \text { if }\left|r_{0}\right|>R
$$

$$
\mathrm{T}=0 \text { else }
$$

Hadron-nucleus scattering amplitudes: a FKPP problem

Actually, the hadron is "seen" from the nucleus in an actual quark-antiquark state only if it is very slow (rapidity $\mathrm{y} \approx 0$), namely almost at rest.

Interaction probability (amplitude):

$$
\begin{aligned}
& \mathrm{T}=1 \text { if }\left|\mathrm{r}_{0}\right|>R \\
& \mathrm{~T}=0 \text { else }
\end{aligned}
$$

Hadron-nucleus scattering amplitudes: a FKPP problem

In general, the bare state is "dressed" by quantum fluctuations, essentially in the form of additional gluons

Interaction probability (amplitude):
$\mathrm{T}=1$ if $\left|\mathrm{r}_{1}\right|$ or $\left|\mathrm{r}_{0}-\mathrm{r}_{1}\right|>R$
$\mathrm{T}=0$ else

Hadron-nucleus scattering amplitudes: a FKPP problem

In general, the bare state is "dressed" by quantum fluctuations, essentially in the form of additional gluons

The gluon can be thought of as been radiated by the quark or the antiquark as the rapidity increases by dy

Interaction probability (amplitude):

$$
\begin{aligned}
& T=1 \text { if }\left|r_{1}\right| \text { or }\left|r_{0}-r_{1}\right|>R \\
& T=0 \text { else }
\end{aligned}
$$

Hadron-nucleus scattering amplitudes: a FKPP problem

 essentially in the form of additional gluons

Interaction probability (amplitude):

$$
\begin{aligned}
& T=1 \text { if }\left|r_{1}\right| \text { or }\left|r_{0}-r_{1}\right|>R \\
& T=0 \text { else }
\end{aligned}
$$

The probability of a branching is computed from QCD:

$$
\bar{\alpha} \boldsymbol{d} \boldsymbol{y} \frac{\mathrm{d}^{2} \mathrm{r}_{1}}{2 \pi} \frac{\mathrm{r}_{0}^{2}}{\mathrm{r}_{1}^{2}\left(\mathrm{r}_{0}-\mathrm{r}_{1}\right)^{2}}
$$

coupling constant

Hadron-nucleus scattering amplitudes: a FKPP problem

meson

Interaction probability (amplitude):
$T=1$ if at least one size $>R$ T=0 else

The gluons may also branch into other gluons with the same probability function

$$
\bar{\alpha} \boldsymbol{d} \boldsymbol{y} \frac{\mathrm{d}^{2} \mathrm{r}_{2}}{2 \pi} \frac{\mathrm{r}_{1}^{2}}{\mathrm{r}_{2}^{2}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}}
$$

Hadron-nucleus scattering amplitudes: a FKPP problem

These branchings are iterated up to the scattering rapidity to construct the state of the meson

Interaction probability (amplitude):

$$
T=1 \text { if at least one size }>R
$$

$$
\mathrm{T}=0 \text { else }
$$

Hadron-nucleus scattering amplitudes: a FKPP problem

Interaction probability (amplitude):
$\mathbf{T}=1$ if at least one size $>\mathbf{R}$ T=0 else
These branchings are iterated up to the scattering rapidity to construct the state of the meson

The Balitsky-Kovchegov equation

$$
\begin{aligned}
& \partial_{\mathrm{y}} \mathrm{~T}\left(\mathrm{r}_{0}, \mathrm{y}\right)=\bar{\alpha} \int \frac{\mathrm{d}^{2} \mathrm{r}_{1}}{2 \pi} \frac{\mathrm{r}_{0}^{2}}{\mathrm{r}_{1}^{2}\left(\mathrm{r}_{0}-\mathrm{r}_{1}\right)^{2}}\left[\mathrm{~T}\left(\mathrm{r}_{1}, \mathrm{y}\right)+\mathrm{T}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y}\right)-\mathrm{T}\left(\mathrm{r}_{0}, \mathrm{y}\right)-\mathrm{T}\left(\mathrm{r}_{1}, \mathrm{y}\right) \mathrm{T}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y}\right)\right] \\
& \mathrm{T}\left(\mathrm{r}_{0}, \mathrm{y}=0\right)=\Theta\left(\left|\mathrm{r}_{0}\right|-\mathrm{R}\right)
\end{aligned}
$$

is now understood as an equation for the probability that there is at least one object of size larger than R produced by the branching process iterated to rapidity y.

A genealogy problem in high-energy scattering

meson

r_{0}

Surprising experimental fact: There is a significant fraction of events in which the nucleus stays intact, and there is no particle at all in some angular sector \rightarrow called "diffractive events"

A genealogy problem in high-energy scattering

Surprising experimental fact: There is a significant fraction of events in which the nucleus stays intact, and there is no particle at all in some angular sector \rightarrow called "diffractive events"

Large nucleus at rest

R

Void angular sector; size characterized by a rapidity variable \mathbf{y}_{0}

Equation established in QCD for the distribution of this angle (Kovchegov, Levin, 2001):

$$
\begin{aligned}
& \text { Define } \mathrm{T}_{\text {in }} \text { as follows: for } \mathrm{y}=\mathrm{y}_{0}, \quad \mathrm{~T}_{\text {in }}\left(\mathrm{r}_{0}, \mathrm{y}_{0} ; \mathrm{y}_{0}\right)=2 \mathrm{~T}\left(\mathrm{r}_{0}, \mathrm{y}_{0}\right)-\mathrm{T}^{2}\left(\mathrm{t}_{0}, \mathrm{y}_{0}\right) \quad \text { and for } \mathrm{y}>\mathrm{y}_{0} \text { : } \\
& \qquad \partial_{\mathrm{y}} \mathrm{~T}_{\text {in }}\left(\mathrm{r}_{0}, \mathrm{y} ; \mathrm{y}_{0}\right)=\bar{\alpha} \int \frac{\mathrm{d}^{2} \mathrm{r}_{1}}{2 \pi} \frac{\mathrm{r}_{0}^{2}}{\mathrm{r}_{1}^{2}\left(\mathrm{r}_{0}-\mathrm{r}_{1}\right)^{2}}\left[\mathrm{~T}_{\text {in }}\left(\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right)+\mathrm{T}_{\text {in }}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right)-\mathrm{T}_{\text {in }}\left(\mathrm{r}_{0}, \mathrm{y} ; \mathrm{y}_{0}\right)-\mathrm{T}_{\text {in }}\left(\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right) \mathrm{T}_{\text {in }}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right)\right]
\end{aligned}
$$

The distribution of y_{0} reads $\frac{1}{2 \mathrm{~T}\left(\mathrm{r}_{0}, \mathrm{Y}\right)} \frac{\partial}{\partial \mathrm{y}_{0}} \mathrm{~T}_{i n}\left(\mathrm{r}_{0}, \mathrm{Y} ; \mathrm{y}_{0}\right)$

A genealogy problem in high-energy scattering

meson

Surprising experimental fact: There is a significant fraction of events in which the nucleus stays intact, and there is no particle at all in some angular sector \rightarrow called "diffractive events"

Large nucleus at rest

R

Void angular sector; size characterized by a rapidity variable \mathbf{y}_{0}

Equation established in QCD for the distribution of this angle (Kovchegov, Levin, 2001):

$$
\text { Define } \mathrm{T}_{\text {in }} \text { as follows: for } \mathrm{y}=\mathrm{y}_{0}, \mathrm{~T}_{\text {in }}\left(\mathrm{r}_{0}, \mathrm{y}_{0} ; \mathrm{y}_{0}\right)=2 \mathrm{~T}\left(\mathrm{r}_{0}, \mathrm{y}_{0}\right)-\mathrm{T}^{2}\left(\mathrm{~L}_{0}, \mathrm{y}_{0}\right) \quad \text { and for } \mathrm{y}>\mathrm{y}_{0} \text { : }
$$

$$
\partial_{\mathrm{y}} \mathrm{~T}_{i n}\left(\mathrm{r}_{0}, \mathrm{y} ; \mathrm{y}_{0}\right)=\bar{\alpha} \int \frac{\mathrm{d}^{2} \mathrm{r}_{1}}{2 \pi} \frac{\mathrm{r}_{0}^{2}}{\mathrm{r}_{1}^{2}\left(\mathrm{r}_{0}-\mathrm{r}_{1}\right)^{2}}\left[\mathrm{~T}_{i n}\left(\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right)+\mathrm{T}_{\text {in }}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right)-\mathrm{T}_{\text {in }}\left(\mathrm{r}_{0}, \mathrm{y} ; \mathrm{y}_{0}\right)-\mathrm{T}_{\text {in }}\left(\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right) \mathrm{T}_{\text {in }}\left(\mathrm{r}_{0}-\mathrm{r}_{1}, \mathrm{y} ; \mathrm{y}_{0}\right)\right]
$$

The distribution of y_{0} reads $\frac{1}{2 \mathrm{~T}\left(\mathrm{r}_{0}, \mathrm{Y}\right)} \frac{\partial}{\partial \mathrm{y}_{0}} \mathrm{~T}_{\text {in }}\left(\mathrm{r}_{0}, \mathrm{Y} ; \mathrm{y}_{0}\right)$
Interpretation: $T_{i n}$ turns out to be twice the probability that the objects of size larger than R at rapidity y had an odd number of ancestors at rapidity $\mathrm{Y}-\mathrm{y}_{0}$

Outline

场 From particle physics to branching processes

氺 Genealogy of particles ending up beyond a predefined position

A class of observables on branching processes

We consider realizations of the one-dimensional BBM such that the initial particle at position $x=0$ has its rightmost offspring at a position larger than X (i.e. it is "red", by definition) at the final time T.

A class of observables on branching processes

We consider realizations of the one-dimensional BBM such that the initial particle at position $x=0$ has its rightmost offspring at a position larger than X (i.e. it is "red", by definition) at the final time T.

We always take T large, and choose X such that

$$
1 \ll X-m_{T} \ll \sqrt{T}
$$

Expected position of the lead particle at T

A class of observables on branching processes

We consider realizations of the one-dimensional BBM such that the initial particle at position $x=0$ has its rightmost offspring at a position larger than X (i.e. it is "red", by definition) at the final time T.

We always take T large, and choose X such that

$$
1 \ll X-m_{T} \ll \sqrt{T}
$$

Expected position of the lead particle at T

What are the properties of this subtree?

A class of observables on branching processes

We consider realizations of the one-dimensional BBM such that the initial particle at position $x=0$ has its rightmost offspring at a position larger than X (i.e. it is "red", by definition) at the final time T.

We always take T large, and choose X such that

$$
1 \ll X-m_{T} \ll \sqrt{T}
$$

Expected position of the lead particle at T

What are the properties of this subtree?

Our BBM is such that the proba $u(t, x)$ that the lead particle has position larger than x at time t obeys the FKPP equation in the form:

$$
\begin{aligned}
& \partial_{t} u(t, x)=\frac{1}{2} \partial_{x}^{2} u(t, x)+u(t, x)[1-u(t, x)] \\
& u(t=0, x)=\Theta(-x)
\end{aligned}
$$

Genealogies: two formulas

Distribution of the branching time of the last common ancestor of all red particles
Probability density of the overlap $q=\frac{t_{L C A}}{T}$

$$
\pi(q) \simeq \frac{1}{2 \sqrt{\pi T}} \frac{1}{q^{3 / 2}(1-q)^{3 / 2}}
$$

Le, Mueller, SM, Phys.Rev. D 103 (2021) 054031
This is the same formula as for the distribution of the overlaps of two extremal particles in unconditioned BBM conjectured by Derrida \& Mottishaw, EPL, 115 (2016) 40005

Genealogies: two formulas

Distribution of the branching time of the last common ancestor of all red particles
Probability density of the overlap $q=\frac{t_{L C A}}{T}$

$$
\pi(q) \simeq \frac{1}{2 \sqrt{\pi T}} \frac{1}{q^{3 / 2}(1-q)^{3 / 2}}
$$

Le, Mueller, SM, Phys.Rev. D 103 (2021) 054031
This is the same formula as for the distribution of the overlaps of two extremal particles in unconditioned BBM conjectured by Derrida \& Mottishaw, EPL, 115 (2016) 40005

Distribution of the number of red particles at a given time
Probability to have k red particles at t_{0} given there is at least one:

$$
r_{k \geq 2}\left(t_{0}\right) \simeq\left(\frac{1}{\sqrt{\pi\left(T-t_{0}\right)}}+\frac{1}{\sqrt{2}\left(X-m_{T}\right)}\right) \frac{1}{k(k-1)}
$$

Formulation using a generating function

Probability that a particle at x at time t is red: $U(t, x)=u(T-t, X-x)$
Call $Q_{k}\left(t, x ; t_{0}\right)$ the probability that the particle at x at time t has k red offspring at time t_{0} :

$$
r_{k}\left(t_{0}\right)=\frac{Q_{k}\left(0,0 ; t_{0}\right)}{U(0,0)}
$$

Generating function: $U_{\lambda}\left(t, x ; t_{0}\right)=1-\sum_{k} \lambda^{k} Q_{k}\left(t, x ; t_{0}\right)$
Fact: $v(t, x)=U_{\lambda}\left(t_{0}-t, x ; t_{0}\right)$ obeys the FKPP equation with initial condition $v(0, x)=(1-\lambda) U\left(t_{0}, x\right)$

Hence our observables may be deduced from a solution to the FKPP equation with peculiar initial conditions. It amounts to computing a shift of the large-time position of the TW due to the initial conditions.

There is also a probabilistic method: it requires however to use the phenomenological model for BBM [see
Brunet, Derrida, Mueller, SM (2005); Mueller, SM (2014)]

Outline

次 From particle physics to branching processes

决 Genealogy of particles ending up beyond a predefined position

准 An exact Monte Carlo algorithm to generate the tip of BRWs at large times

Numerical methods

It is convenient to be able to compute numerically the observables we aim at understanding: to build up an intuition, and eventually to check analytical formulas.

Numerical methods

It is convenient to be able to compute numerically the observables we aim at understanding: to build up an intuition, and eventually to check analytical formulas.

- For some observables (e.g. the overlap), the best method is to solve the evolution equation for the generating function (or its discretized version)
- For observables such as r_{k} for k not small, or for observables dominated by typical realizations, it is impractical to extract the information from a generating function (require the numerical evaluation of e.g. highorder derivatives)

Monte Carlo simulations are indicated for such observables!

Numerical methods

It is convenient to be able to compute numerically the observables we aim at understanding: to build up an intuition, and eventually to check analytical formulas.

- For some observables (e.g. the overlap), the best method is to solve the evolution equation for the generating function (or its discretized version)
- For observables such as r_{k} for k not small, or for observables dominated by typical realizations, it is impractical to extract the information from a generating function (require the numerical evaluation of e.g. highorder derivatives)

Monte Carlo simulations are indicated for such observables!

But our observables use ensembles of rare realizations, evolved to large times... a "naive" implementation would clearly be unuseful.

On the other hand, we only care about the particles that arrive near the extremal one. Is there a way to evolve exactly only these particles?

Realization of the tail of a BBM

(actually BRW)

Conditioning: at least one particle beyond X (far from m_{T})
Keep all particles arriving in $[X-\Delta,+\infty)$

We can go to much larger times! [Currently, $T=O(10000)]$

A simple branching random walk

Consider a set of particles on a lattice in space and time, with respective spacing $d x$ and $d t$

A simple branching random walk

Consider a set of particles on a lattice in space and time, with respective spacing $d x$ and $d t$ Each particle evolves in time through 3 elementary processes:

Probability p_{r}

Probability $p_{\text {, }}$

Probability r

$$
p_{r}+p_{l}+r=1
$$

A simple branching random walk

Consider a set of particles on a lattice in space and time, with respective spacing $d x$ and $d t$ Each particle evolves in time through 3 elementary processes:

Start with a single particle at the origin.
The probability that the rightmost particle has a position larger than x at time t satisfies

$$
u(t+d t, x)=p_{r} u(t, x-d x)+p_{l} u(t, x+d x)+r u(t, x)[2-u(t, x)] \quad u(t=0, x)=\Theta(-x)
$$

The probability that the particle at x at time t is red reads $U(t, x)=u(T-t, X-x)$

Algorithm

Evolution of the red particles

Consider generically one particle at position x at time t.

Algorithm
 Evolution of the red particles

Consider generically one particle at position x at time t.
Between times t and $t+d t$, it may
move:
branch:

Algorithm
 Evolution of the red particles

Consider generically one particle at position x at time t.
Between times t and $t+d t$, it may
move: - Proba that it is red and that it jumps right: $\quad P(r ; r e d)=p_{r} U(t+d t, x+d x)$
branch:

Algorithm
 Evolution of the red particles

Consider generically one particle at position x at time t.
Between times t and $t+d t$, it may
move:

- Proba that it is red and that it jumps right: $\quad P(r ; r e d)=p_{r} U(t+d t, x+d x)$

Proba that it jumps right given that it is red: $\quad P(r \mid$ red $)=p_{r} \frac{U(t+d t, x+d x)}{U(t, x)}$
branch:

Algorithm
 Evolution of the red particles

Consider generically one particle at position x at time t.
Between times t and $t+d t$, it may
move:

- Proba that it is red and that it jumps right: $\quad P(r ;$ red $)=p_{r} U(t+d t, x+d x)$

Proba that it jumps right given that it is red: $\quad P(r \mid$ red $)=p_{r} \frac{U(t+d t, x+d x)}{U(t, x)}$

- Proba that it jumps left given that it is red: $\quad P(l \mid$ red $)=p_{l} \frac{U(t+d t, x-d x)}{U(t, x)}$

branch:

Algorithm
 Evolution of the red particles

Consider generically one particle at position x at time t.
Between times t and $t+d t$, it may
move:

- Proba that it is red and that it jumps right: $\quad P(r ; r e d)=p_{r} U(t+d t, x+d x)$

Proba that it jumps right given that it is red: $\quad P(r \mid$ red $)=p_{r} \frac{U(t+d t, x+d x)}{U(t, x)}$

- Proba that it jumps left given that it is red: $\quad P(l \mid$ red $)=p_{l} \frac{U(t+d t, x-d x)}{U(t, x)}$

branch: - Proba that it branches into two red given that it is red: $\quad P(2$ red \mid red $)=r \frac{[U(t+d t, x)]^{2}}{U(t, x)}$

Algorithm
 Evolution of the red particles

Consider generically one particle at position x at time t.
Between times t and $t+d t$, it may
move:

- Proba that it is red and that it jumps right: $\quad P(r ; r e d)=p_{r} U(t+d t, x+d x)$

Proba that it jumps right given that it is red: $\quad P(r \mid$ red $)=p_{r} \frac{U(t+d t, x+d x)}{U(t, x)}$

- Proba that it jumps left given that it is red: $\quad P(l \mid$ red $)=p_{l} \frac{U(t+d t, x-d x)}{U(t, x)}$

branch: - Proba that it branches into two red given that it is red: $\quad P(2$ red \mid red $)=r \frac{[U(t+d t, x)]^{2}}{U(t, x)}$
- Proba that it branches into one red and one non-red given that it is red:

$$
P(\text { red }+ \text { non-red } \mid \text { red })=r \frac{2 U(t+d t, x)[1-U(t+d t, x)]}{U(t, x)}
$$

In this case, the nothing actually happens to the red particle.

Algorithm

Evolution of the orange particles

Definitions: A particle is orange if it has its rightmost offspring in $[X-\Delta, X)$ at time T. A particle is blue if it has its rightmost offspring in $(-\infty, X-\Delta)$ at time T.

Algorithm

Evolution of the orange particles

Definitions: A particle is orange if it has its rightmost offspring in $[X-\Delta, X)$ at time T. A particle is blue if it has its rightmost offspring in $(-\infty, X-\Delta)$ at time T.

The probability that the particle at x at time t is orange reads $\quad V_{\Delta}(t, x)=U(t, x+\Delta)-U(t, x)$

Algorithm

Evolution of the orange particles

Definitions: A particle is orange if it has its rightmost offspring in $[X-\Delta, X)$ at time T. A particle is blue if it has its rightmost offspring in $(-\infty, X-\Delta)$ at time T.

The probability that the particle at x at time t is orange reads $\quad V_{\Delta}(t, x)=U(t, x+\Delta)-U(t, x)$
Orange particles are created from branching of red particles

$$
P(\text { red+orange } \mid \text { red })=r \frac{2 U(t+d t, x) V_{\Delta}(t+d t, x)}{U(t, x)}
$$

Algorithm
 Evolution of the orange particles

Definitions: A particle is orange if it has its rightmost offspring in $[X-\Delta, X)$ at time T. A particle is blue if it has its rightmost offspring in $(-\infty, X-\Delta)$ at time T.

The probability that the particle at x at time t is orange reads $\quad V_{\Delta}(t, x)=U(t, x+\Delta)-U(t, x)$
Orange particles are created from branching of red particles

$$
P(\text { red+orange } \mid \text { red })=r \frac{2 U(t+d t, x) V_{\Delta}(t+d t, x)}{U(t, x)}
$$

Moves: Proba that it jumps right or left given that it is or left: the same as for the red particles, with the substitution $U \rightarrow V_{\Delta}$

Branchings: • Proba that it branches in two orange given that it is orange: The same as for the red particles, with the substitution $U \rightarrow V_{\Delta}$

- Proba that it branches in one orange and one blue given that it is orange:

$$
P(\text { orange }+ \text { blue } \mid \text { orange })=r \frac{2 V_{\Delta}(t+d t, x)[1-U(t+d t, x+\Delta)]}{V_{\Delta}(t, x)}
$$

Numerical check of the formula for r_{k}

$$
r_{k \geq 2}\left(t_{0}\right) \simeq\left(\frac{1}{\sqrt{\pi\left(T-t_{0}\right)}}+\frac{1}{\sqrt{2}\left(X-m_{T}\right)}\right) \frac{1}{k(k-1)}
$$

Continuous limit and variants

$$
\begin{aligned}
& p_{r}=p_{l}=\frac{1}{2}(1-d t), \quad r=d t, \quad d x^{2}=d t, \quad d t \rightarrow 0 \\
& \partial_{t} u(t, x)=\frac{1}{2} \partial_{x}^{2} u(t, x)+u(t, x)[1-u(t, x)]
\end{aligned}
$$

We find that the subtree of red particles is a (unconditioned) BBM with drift $\partial_{x} \ln U(t, x)$ and branching rate $U(t, x)$

Continuous limit and variants

$$
\begin{aligned}
& p_{r}=p_{l}=\frac{1}{2}(1-d t), \quad r=d t, \quad d x^{2}=d t, \quad d t \rightarrow 0 \\
& \partial_{t} u(t, x)=\frac{1}{2} \partial_{x}^{2} u(t, x)+u(t, x)[1-u(t, x)]
\end{aligned}
$$

We find that the subtree of red particles is a (unconditioned) BBM with drift $\partial_{x} \ln U(t, x)$ and branching rate $U(t, x)$

We may ask the lead particle at time T to be at X exactly.
Then the drift becomes $\partial_{x} \ln \partial_{x} U(t, x)$

The trajectory of the red particle probably coincides with the spine.

Other uses of the algorithm: one example

Other uses of the algorithm: one example

Number of orange particles when the position of the lead particle is fixed

Other uses of the algorithm: one example

Number of orange particles when the position of the lead particle is fixed (NB: for the BBM)

$$
\bar{n}(\Delta) \propto e^{\sqrt{2} \Delta}
$$

Other uses of the algorithm: one example

Number of orange particles when the position of the lead particle is fixed (NB: for the BBM)

$$
\begin{aligned}
& \bar{n}(\Delta) \propto e^{\sqrt{2} \Delta} \\
& n_{\text {typical }}(\Delta) \propto \exp \left(\sqrt{2} \Delta-\xi \Delta^{2 / 3}\right)
\end{aligned}
$$

Undetermined constant

$$
\begin{aligned}
& 1 \ll X-m_{T} \ll \sqrt{T} \\
& X-\Delta-m_{T} \gg 1, \quad \Delta \gg 1
\end{aligned}
$$

Other uses of the algorithm: one example

Number of orange particles when the position of the lead particle is fixed (NB: for the BBM)

$$
\begin{aligned}
& \bar{n}(\Delta) \propto e^{\sqrt{2} \Delta} \\
& n_{\text {typical }}(\Delta) \propto \exp \left(\sqrt{2} \Delta-\xi \Delta^{2 / 3}\right)
\end{aligned}
$$

Undetermined constant

$$
\begin{aligned}
& 1 \ll X-m_{T} \ll \sqrt{T} \\
& X-\Delta-m_{T} \gg 1, \quad \Delta \gg 1
\end{aligned}
$$

Mueller \& SM, Phys.Rev. E 102 (2020) 022104
Formulas obtained from a very, very laborious calculation based on a generating function (Mueller, SM, Phys.Rev. E, 2020), following a formulation of such problems due to Brunet \& Derrida (2011).

NB: This formula can be recovered from a probabilistic picture, in a more straightforward way... maybe probabilists will be able to determine the unknown constant?

Numerical check of $\frac{\eta_{\text {vpical }}}{\bar{n}} \sim e^{-\xi s^{2 s}}$

Summary

- Branching processes are found in the formulation of hadronic scattering observables at very high energies. "FKPP math" is relevant in this context.
- We have proposed heuristic expressions for properties of particles near the tip of a BRW, and an exact Monte Carlo algorithm to generate the tip.

Summary

- Branching processes are found in the formulation of hadronic scattering observables at very high energies. "FKPP math" is relevant in this context.
- We have proposed heuristic expressions for properties of particles near the tip of a BRW, and an exact Monte Carlo algorithm to generate the tip.

Outlook

- Try to understand the full genealogy of the subtree of red particles?
- Understand more completely the density of particles at the tip, possibly in the stochastic picture, which is more "physical"?

