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COLLABORATIONS

q “ I do the talking” but most of theses results were obtained through 
collaborations…

Ø A. Zoia, A. Mazzolo (CEA/DES)
Ø A. Rosso (UPS/LPTMS)
Ø B. Houchmandzadeh (UJF)
Ø H. Louvin (CEA/DRF)
Ø B. Dechenaux, K. Fröhlicher (IRSN)
Ø T. Lelievre (Ecole des Ponts / Cermics),  M. Rousset (INRIA)
Ø A. Kyprianou (U. Bath), E. Horton (INRIA)
Ø … and others!

See references for more informations



OUTLINE

q Monte Carlo simulation of nuclear reactors

q Reactor physics in a nutshell

Ø Why bother ?
Ø What’s the matter ?

q Stochastic modelling of spatial correlations in BBM
Ø Branching Brownian Motion
Ø Fluctuations & Gambler’s ruin

q Ergodicity breaking
Ø Clustering
Ø F-KPP traveling waves

q Numerical methods to tackle them

Ø From rare events to population control using AMS
Ø Results
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EVERYTHING YOU ALWAYS WANTED TO KNOW … 

… about nuclear reactors, and were afraid to ask

Uranium

Water

Fission chain: neutron à fission à neutrons + energy à capture or fission à …

Goal: constant power, i.e., keep the fission chains stable (critical regime)

Ø Balance between births and deaths, on average

Sources of fluctuations in the neutron population: spatial diffusion, fission & capture

Courtesy of A. Zoia



NEUTRON-NUCLEI INTERACTIONS AS A RANDOM WALK

Neutrons as a (diluted) gas of diffusing particles

Ø with birth and death

Stochastic process z(t) = { r,W, E }(t):

Ø branching exponential flights 

Jump kernel:

Collision densities:

S(E)

The medium is spatially  heterogeneous

W

E

S(E):
cross section

z

t z(t) = { r,W, E }

fission
capture

scattering

PAGE 6Courtesy of A. Zoia
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MONTE CARLO NEUTRON TRANSPORT CODES 
& THE NUCLEAR INDUSTRY

6 JUIN 2022

q Monte Carlo neutron transport codes : 

Ø since World War II, close intermixed history between Monte Carlo methods, nuclear 
applications of fission & supercomputing

q Nuclear energy : MC neutron transport codes are used as reference numerical 
schemes as

Ø no spatial / angular mesh required

Ø no hypotheses on energy E (EDF industrial numerical scheme = 2-group diffusion)

q Extremely versatile: Complex geometries without fine tuning of ad hoc schemes

▶ Used for the design of GenIV reactors (Fast Reactors, Thorium reactors, …)
▶ Used by nuclear safety authorities to validate and qualify all safety procedures

PAGE 8



q Long standing issue (70’s)
q Spatial asymmetries in the flux distribution for symmetric positions
q Underestimation of statistical uncertainties!

pin power distribution 900 MW PWR

real std dev

apparent std dev

[Gelbard and Prael, 1974]      [Brissenden and Garlick, 1986]      [Brown, Physor 2006] 

BIAS IN STATISTICAL UNCERTAINTIES ESTIMATIONS

[Martin, Physor2012]
[Lee et al, SNA+MC2010]



Fluxes (104 active cycles of 104 neutrons) Fluxes (106 active cycles of 102 neutrons)
Fluxes (102 active cycles of 106 neutrons)

Under-estimation of the flux inside the core, over-estimation for the outer parts

q Benchmark OECD/NEA
q ¼ PWR-type core

BIAS IN AVERAGE QUANTITIES ESTIMATIONS
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BRANCHING BROWNIAN MOTION

t

x
(t

)

x1

x2

x3

example with d=1

BBM process couples :

Þ Galton-Watson birth-death process
to describe fission and captures

Þ Brownian motion to simulate
neutron transport

Simplified model for neutron transport in multiplicative media :
q neutrons, uniformly distributed at t=0
q Infinite medium (            )
q No energy dependence
q Brownian motion with diffusion coefficient D [cm2.s-1]
q Undergoes collision at Poissonian times with rate      [s-1]
q At each collision,     descendants with probability
q Dimension d

€ 

L→∞
< x2(t) >= Dt

shuffling

N0 ! 1
c0 = cte

p(2), p(3), ... $ �f

p(1) $ �s

p(0) $ �c

�1 =
X

k

kp(k)



NEUTRON CLUSTERING

x x

x x

y y

yy

z z

z z

t=0 t=100

t=300t=200

Can we have a quantitative
insight into this phenomenon?

q Exponential flights with 
typical jump size 
to recover the diffusion regime 

q Binary branching

q Dimension

q Typical length

€ 

1/Σs →0

€ 

d = 3

€ 

L >> l

q Numerical « toy model »

p(0) =
1

2
p(2) =

1

2

The “ 1d ” rod model

The “ 3d ” homogeneous cube



FLUCTUATIONS (I.E. CLUSTERING IN DIMENSION 0)

q We consider a “cell” i at time t with      individuals 
q d=0  Branching events with:

Ø production rate 
Ø capture rate 

q Proba(nèn+1 in dt):
q Proba(nèn-1 in dt):

< n(t) >=
X

n

nP (n, t)

n
l

W+(n)dt = �ndt
W�(n)dt = µndt

�, µ [s�1]

n [#]

dt [s]

Forward master equation

< n2(t) >=
X

n

n2P (n, t)

dP (n, t)

dt
= W�(n+ 1)P (n+ 1, t)

Critical :

< n(t) >= n0

�p(2)�p(0),

�p(0)ndt
�p(2)ndt

�p(0) = �p(2)

< V (t) >= �n0t

< n(t) >= n0e
�(p(2)�p(0))t

< V (t) >=< n2(t) > � < n(t) >2= �(p(0) + p(2))n0t

�p(0)
�p(2)

�p(2)
�p(0)

�p(2)�p(0)

W+(n)
W�(n)

�W�(n)P (n, t)W�(n)

+W+(n)P (n, t)�W+(n)W�(n+ 1)

+W+(n� 1)P (n� 1, t)W+(n� 1)



THE GAMBLER’S RUIN

Blaise Pascal (1623-1662)
mathematician & philosopher

Pierre de Fermat (1605-1665)
mathematician & magistrate

“ what happens if I have $1000 at hand 
and I play a fair game 

(p=0.5 to win, p=0.5 to loose) 
betting $1 at each trial ? ” 

Letter (1656)

N0=$1000

$0
time

Almost sure ruin!
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[Houchmanzadeh, 2008]

More & more ruins

as time goes by, 
less and less “rich” 

player, getting 
richer and richer to 

compensate the 
ruins

[Williams, 1974]

Fair game    → criticality in reactor physics
Gambler’s ruin  →  critical catastrophe!

q Could a nuclear reactor shut down alone?
q Possible to conceive such an experiment?
q What about the « proliferating trajectories? 

N neutrons in a critical spatial cell 
which undergo fission or capture 

events

N $1 coins in a box which are 
played in a fair game



… AND FROM CRITICAL CATASTROPHY TO NEUTRON CLUSTERING

N0=$1000

$0
time

Almost sure ruin!

[Houchmandzadeh, PRE 2008]

< n(t) >= n0

< V (t) >= �n0t



OUTLINE

q Monte Carlo simula]on of nuclear reactors

q Reactor physics in a nutshell

Ø Why bother ?
Ø What’s the matter ?

q Stochastic modelling of spatial correlations in BBM
Ø Fluctuations & Gambler’s ruin
Ø Spatial correlations & clustering

q Ergodicity breaking
Ø Clustering
Ø F-KPP traveling waves

q Numerical methods to tackle them

Ø From rare events to population control using AMS
Ø Results



FROM D=0 TO D=2

d=0 => Critical castastrophy ó Gambler’s ruin
d>0 => Neutron clustering

but here the cells were totally decoupled → “fake” d=2

We have to take into account the 
diffusion of neutrons

?



A LITTLE BIT OF FIELD THEORY

n1n2
.......... ni

�n

l

⌘iwith      the number of
neutrons in cell i

and � = D/2l2

q fission event
Ø proba:
Ø action on      :

q capture event
Ø proba:
Ø action on      :

q migration event
Ø proba:
Ø action on      :

�n

�n

�n a+i ai�1�n

Forward master equation

+Wm(a+i�1ai�n, i� 1, i)P (a+i�1ai�n, t)�Wm(�n, i, i+ 1)P (�n, t)

+Wm(a+i+1ai�n, i+ 1, i)P (a+i+1ai�n, t)�Wm(�n, i, i� 1)P (�n, t)

dP (�n, t)

dt
=

X

i

W+(ai�n, i)P (ai�n, t) �W+(�n, i)P (�n, t)

+W�(a+i �n, i)P (a+i �n, t) �W�(�n, i)P (�n, t)

Wm(⇤n, i� 1 ! i)dt = ⇥p(1)�i⇤ndt

Wm(a+i�1ai~n, i� 1, i)P (a+i�1ai~n, t)

Wm(a+i+1ai~n, i+ 1, i)P (a+i+1ai~n, t)

Wm(~n, i, i+ 1)P (~n, t)

Wm(~n, i, i� 1)P (~n, t)

a+i �n = (..., ni�1, ni + 1, ni+1, ...)

ai�n = (..., ni�1, ni � 1, ni+1, ...)

W+(⇤n, i)dt = ⇥p(2)�i⇤ndtp(2)W+

W�(⇤n, i)dt = ⇥p(0)�i⇤ndtp(0)W�

Wm p(1)

ni�1

W+
W+

W� W�

(a+i�1ai�n, i� 1, i)

(a+i+1ai�n, i+ 1, i)

(�n, i, i+ 1)

(�n, i, i� 1)

Wm(i� 1 ! i)

�p(1)



< nk >=
X

n

nkP (nk, t)

As before one can inject in the Master equation the mean number of neutrons 
in cell k:

And define an appropriate tool to study spatial correlations:      

the centered correlations without self-contribution

c(x) = lim
l!0

nk

l

g(x, t) = (< c(y)c(y + x) >�c2�c�(x))/c2

or its continuous version:

.......... ..........
l ! 0

y y + x

c(y + x)c(y)

x

A LITTLE BIT OF FIELD THEORY



EQUATION FOR THE 2-POINTS CORRELATION FUNCTION

Young, W.R., Roberts, A.J., Stuhne, G., Nature 412, 328 (2001)
Houchmandzadeh, B., Phys. Rev. E 66, 052902 (2002)
Houchmandzadeh, B., Phys. Rev. Lett. 101, 078103 (2008)
Houchmandzadeh, B., Phys. Rev. E 80, 051920 (2009)

d-dimensional Laplacian
(diffusion term)

auto-correlation term
leading to 2nd moment
effects (     is the mean

number of pairs)

with r = x − y

and

€ 

ν2

The equations obtained stand for any arbitrary dimension d and in the case
can be written :

Dumonteil, E. et al, Annals of Nuclear Energy 63, 612-618 (2014)



ANALYTICAL SOLUTION TO THIS EQUATION

where stands for the 

With initial condition the solution to the 1st equation is:

(for all t)

And the solution to the 2-points function is, taking dimension d = 3 :

incomplete Gamma function

Amplitude ∝
λν2
Dc0 g can be interpreted as the probability

to find a neutron next to another



NO 1-DIMENSIONAL NUCLEAR REACTOR

All those equations model the neutron transport in fissile medium
(not only the criticality mode of MC codes)

The solution to the 2-points function when
dimension d = 1 or d = 2 

diverges with time…

…a purely 1d infinite system systematically develops power peaks at arbitrary places!

In 3d the typical amplitude of those peaks is controlled by                                  . 

Challenge in MC criticality simulations :             << Less than in reality!

< ... >=

⌫2
c0

fission process

different in
reactor physics
and MC simu

c0



POPULATION CONTROL ALGORITHM, KEFF, SPATIAL POWER 
DISTRIBUTION

PAGE 25

q Neutron transport in fissile media (birth-death process)
q Critical Boltzmann equation
q Population control usually done via ‘power iteration’

q Eigenvalue: reproduction factor 𝜶 (time) or keff (generation) 
q Eigenvectors: power distribution

900 MW PWR

t or g

Population control algo. to keep N constant

splitting
roulette

1D mono-E rod 

cosine
shape

25
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q Poisson statistics 
q Cosine shape 

q 1-D BBM with population control
q Uniform initial distribution

Strongly coupled

q 50 neutrons
q [-L,L] Dirichlet

DN

�L2
>> 1

CLUSTERING + POPULATION CONTROL
IN STRONGLY COUPLED SYSTEMS



Splitting = artificial fission

q Clustering 
q Only one cluster after some time 
q Reflected albeit leaking boundaries !

Loosely coupled

Reflection due to 
N=constant even 
if Dirichlet bc ! 

q 1-D BBM with population control
q Uniform initial distribution

q 50 neutrons
q [-L,L] Dirichlet

DN

�L2
<< 1

CLUSTERING + POPULATION CONTROL
IN DECOUPLED SYSTEMS

Reflection due to 
N=constant even 
if Dirichlet bc ! 
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HOW DO THESE PROCESSES AVERAGE THROUGH TIME ?

From strongest to lousiest coupled systems

q Reproduces the “reactor” benchmark
q Grasp the features of the under-sampling bias

Ø Leakage boundaries
Ø Amplitude depends on N & the system size
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DIFFUSION EQUATION WITH POPULATION CONTROL

@t� = Dr2�+ (� � �) �

q Monte-Carlo criticality codes = Boltzmann equation + population control
q Population control = Weight Watching techniques (i.e. splitting+roulette)

played at end of cycles to ensure that N~cte

Can we build an equation for what MC criticality codes actually solve ? 

Fission rate

Capture rateTransport / Diffusion

+ ?

t or g

Rate of “artificial” fission/capture depends on spatial correlations and time ! 

Splitting = artificial fission

Roulette = artificial 
capture
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PAIR INTERACTIONS

But how many neutrons do we 
remove/split at the end of each cycle

and how to select them ?

q Combinatorial interactions !
~ N2 at first order (# pairs)

q Depends on the total mass N
q Depends on the local mass N(x)

renormalization rate depends on 
time and N ! 

�(t)f(N)N

(N � 1)N⇡

N2

Generalization # neutrons captured 
in                if k>1

number of pairs

x± dx

Birch et al, Theoretical Population Biology, 
70, 26–42 (2006)

�(t)

Z
dy G(x, y, t)
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DIFFUSION WITH PAIR INTERACTIONS

@t� = Dr2�+ (� � �) �

@t� = Dr2�+ (� � �) �+ �

Z
dy G(x, y, t)

number of pairs

rate of renormalization

G(x, y, t) =
h
1 + g(x, y, t)

i
�(x)�(y)

g(x, y, t) spatial correlation function

+ pair interactions 

q “Hierarchy horror” (2d order moment pops back in the mean field equation!)
q Clustering = spatial correlations => Bias induced on the flux wrt pure diffusion

�(t)

Z
dy G(x, y, t)
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POPULATION CONTROL 

�(t) =
�� + � �D

R L
�L dx r2�(x, t)

R L
�L dx

R L
�L dy G(x, y, t)

Z L

�L
dx �(x, t) = 1

Newman et al, Phys. Rev. Lett., 92, 228103 (2004)

q N has to be kept constant : 

q depends on time!

q Injecting the normalization relation in our equation, we can calculate 

�

�(t)
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WHAT EQUATION DO MC CODES SOLVE ?

�(t) =
�� + � �D

R L
�L dx r2�(x, t)

R L
�L dx

R L
�L dy G(x, y, t)

@t� = Dr2�+ (� � �) �+ �(t)

Z L

�L
dy (1 + g(x, y, t))�(y, t)�(x, t)

Large population size

Small population size

g(x, y, t) ! 0

g(x, y, t) ! g1N (x, y) >> 1
De Mulatier et al, J. Stat.  Mech., 
15, P08021, 1742–5468 (2015)

Probability that one neutron
in x is captured

Flux factorized
out of the integral
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LARGE POPULATION SIZE

r2��
 Z L

�L
dx r2�(x)

!
� = 0

r2�+
⇡2

2L2
� = 0

@x�(x)
��
x=±L

r2� = 0
Neumann/Reflective bc

Dirichlet/Absorbing bc
No criticality conditions ;)
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SMALL POPULATION SIZE

@t� = Dr2�+ (� � �) �+

 
�� + � �D @x�(x, t)

��
x=±LR +L

�L dx
R +L
�L dx �(x, t)2

!
�(x, t)2

@t� = Dr2�+ (� � �) �(1� �)

q Non-linear equation with         term
q Can be simplified under some assumptions

q F-KPP equation with traveling waves solutions
q Counter-reaction depending on the sign of 

�2

Fisher, Ann. Eugenics 
7:353-369 (1937)

�(x, t) =
1

⇣
1 + C exp±

1
6

p
6(���)x� 5

6 (���)t
⌘2

1� �
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flux profile obtained by
solving the F-KPP equation  

Cluster density profile from the
BBM simulation

TRAVELING WAVE & SOLITONS

q Qualitative & Quantitative scheme to explain 
under-sampling biases on local MC tallies

q Fux profile => comes from the averaging through 
time of the cluster displacement

q Connection between clustering & solitons
Ø Clustering typical of branching processes
Ø Solitons typical of non-linear equations

q Strong connection with the analysis of QCD semi-
classical approximation
Ø Neutron branching -> parton branching
Ø See Stephane’s talk right after mine!



OUTLINE

q Monte Carlo simulation of nuclear reactors

q Reactor physics in a nutshell
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Ø What’s the matter ?

q Stochastic modelling of spatial correlations in BBM
Ø Branching Brownian Mo]on
Ø Fluctua]ons & Gambler’s ruin

q Ergodicity breaking
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Ø F-KPP traveling waves

q Numerical methods to tackle them

Ø From rare events to population control using AMS
Ø Results



AMS

q Originates from applied mathematics applied to molecular dynamic
Ø (Cerou et al, 2007) 
Ø (Cerou et al, 2011)
Ø (Aristoff et al, 2015)

q Adaptation to particle transport 
Ø CEMRACS@CIRM 2013 (Lelievre & Dumonteil)
Ø (Louvin, Dumonteil, Lelievre, Rousset 2017)
Ø (Louvin, Mancusi & Dumonteil 2019) 

q Objective of the different developments presented is to fit in the framework of AMS 
for discrete Markov chains detailed in (Brehier et al, 2016)



AMS FOR VARIANCE REDUCTION IN PARTICLE TRANSPORT

q n par&cles simulated => tracks are stored
q score is assigned to each neutron track (= Max of ξ over whole trajectory)
q tracks are ranked according to their score
q the k-th “worst” track defines the new spliCng level
q the k tracks having scores lesser than this level are deleted
q k tracks are randomly selected and duplicated at the spliCng level
q a new set of n par&cles is obtained, and we start the whole process again

Algorithm with parameters
n (# of par[cles)
k (# of par[cles duplicated/itera[on)
ξ (cost func[on) 

q Stopping criterium:

Ø When n-k tracks have reached the “detector”, the algorithm stops

Ø The number of iteration corresponding to reach that criterium is N

Ø Each neutron is assigned a statistical weight α being:

q An unbiased estimator of the flux is calculated “as usual” using the tracks of the last iteration



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume

Absorption point
Ø n=3

Ø k=1

Ø ξ: distance to the source

Ø Target: spherical shell (purple)

Ø 3 particles simulated from the source
to their absorption (blue points)

40



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume

Absorption point
§ The importance function is the

maximal distance to the source
reached by the particle (red points)

§ In this case the neutron tracks with
the lowest score is n3

41



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume

§ The tracks associated to
par[cle 3 is deleted

§ The maximum score of this
track is stored and defines the
first splibng level

42



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume

§ Track number 2 is randomly
sampled for the splitting

§ A new particle is simulated
from this splitting point until
its absorption

43



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume

§ The score of this new tracks
n3 is calculated

§ The first itera[on is over

§ The stopping criterium is not
meet: the itera[on process
goes on

44



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

§ Iteration 2
We try to estimate the particle flux in this volume

45



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume
§ Itera[on 3

46



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume
§ Iteration 4

47



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

§ Iteration 4

§ n-k particles have reached
the target, the algorithm
stops

§ The statistical weight of the
particles is :

We try to estimate the particle flux in this volume

48



AMS FOR PARTICLE TRANSPORT : THE ALGORITHM

We try to estimate the particle flux in this volume

§ The flux is calculated
according to standard MC flux
estimators. For example the
travelled length in the
spherical shell can be used to
tally the flux:

49



REACTOR PHYSICS SEEN AS A VARIANCE REDUCTION PB & 
USE OF AMS

q AMS can be seen as a tool for both
Ø population control
Ø variance reduction

q Example: 
Ø keff<1
Ø detector = time/generation
Ø rare event = surviving population

q Similarity with a Fleming-Viot particle 
system 

50
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dies by leakage

weight *= 2

iteration dies out

birth collision

APPLICATION TO REACTOR PHYSICS : POPULATION CONTROL

russian
roulette

splitting
AMS splitting

q AMS used in combina[on with branchless collisions

51



APPLICATION TO REACTOR PHYSICS : COST FUNCTION

⟹ 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = 𝑔 +
1

1 + |𝑥|

Dominant term to rank tracks
by generations

& push neutrons through
generations

▌< 1 : Ensures to rank neutrons
inside a generation

▌ A purely discrete importance can
cause the algorithm to prematurely
stop

(Phd Kevin Frohlicher, 2022)

q « Robustness » of AMS : tracks only need to be ranked
(absolute value of importance has no physical meaning)

52



APPLICATION TO REACTOR PHYSICS : SPATIAL CORRELATIONS RESULTS

CEA | October 2019
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q 80 cm slab / binary branching ‘almost’-Brownian motion
q 100 independent simulations / 1000 neutrons per generation / 1000 generations
q Spatial correlations are strongly attenuated (less clustering)



q E. Dumonteil et al, Ann. Nucl. Energy 63, 612-618 (2014).

q A. Zoia et al, Phys. Rev. E 90, 042118 (2014).
q C. de Mulatier et al, J. Stat. Mech. P08021 (2015).

q B. Houchmandzadeh et al, Phys. Rev. E 92, 052114 (2015).

q M. Nowak et al, Ann. Nucl. Energy 94 856-868 (2016).

q H. Louvin et al, EPJ Nuclear Sci. Technol. 3, 29 (2017).

q E. Dumonteil et al, Nuc. Eng. Tech. 49, 1157-1164 (2017).

q E. Dumonteil et al, Nature Comm. Phys. 4, 151 (2021).

q K. Fröhlicher et al, to be published (2022).

q B. Dechenaux et al, to be published (2022).

CEA
Neutronics

UJF/Liphy & CEA
Use of QFT

CEA & MIT
Numerics (entropy)

CEA & IRSN
Percolation & renormalization group
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ADVANCED MODELING

Critical
fuel rod

Local clustering ExtinctionAnarchy

q Dimensionality (3d vs. 1d)

q Finite-speed effects (transport vs. diffusion)

q Vacuum boundary conditions (absorbing BC vs. reflecting BC)

q Delayed neutrons (two time scales vs. single time scale)

q Population control (N does not depend on time)

q Clustering and entropy

q Bias modeling

q Time => generations

Control Local clustering Stable fluctuations

Dumonteil, E. et al, Annals of Nuclear Energy 63, 
612-618 (2014)

Zoia, A. et al, Physical Review E, 
90, 042118 (2014)

De Mulatier et al, J. Stat. Mech., 15 ,
P08021, 1742–5468 (2015)

Houchmandzadeh et al, 
Phys. Rev. E 92 (5), 052114 (2015)

Dumonteil et al, Nuc. Eng. Tech., 
10.1016/j.net.2017.07.011 (2017)

Nowak et al, Ann. Nuc. Ener. 94, 856-868 (2015)

Sutton and Mittal, Nuc. Eng. Tech., 
10.1016/j.net.2017.07.008 (2017)

Credits: A. Zoia
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FISSION/CAPTURE VS SPLITTING/RUSSIAN ROULETTE

f(N)N
�(t)N

�N
�N�⇤N

�⇤N

renormalization rate
depends on N and t/g 

N

2N

N

2

N

Beginning
of cycle

End of
cycle

N

End of
renormalization

t or g

Probability for a given neutron to 
be splitted/captured depends on 

the overall # of neutrons
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q Blinking & Patchy spatial patterns in 
nuclear reactors

Ø 2017 RPI experiments

Ø Role of spontaneous fission sources



LOOKING FOR THE CRITICAL CATASTROPHE & CLUSTERING @ RCF
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q The modeling tells us that both the critical catastrophe & neutron clustering 
might be observed in a nuclear reactor, if certain conditions are met :

q Ideal conditions for an experiment that could characterize clustering?

ü Zero power reactor                                           

ü Fresh fuel, no burn-up effects

ü As big as possible 

ü Find a way to do spatial measurements

Neutron 
migration area

→ NOMAD detectors & He3 tubes

RCF@RPI



THE RCF EXPERIMENTS

q Place & date : 
Mid-2017 @ RPI, Troy, USA

q RCF : 
Ø 4.81% enriched UO2 

ceramic fuel 
Ø 1 mW → 1 W

q Experiments :
Ø 2.103 hours of computing 

for the design
Ø Outer NOMAD detectors 

provided by LANL
Ø Inner detectors: He3 tubes

Possible to measure :
Ø time-dependent neutron   

map within the core
Ø Fluctuations & correlations



HIGH FIDELITY SIMULATIONS & NUMERICAL TWIN OF THE RCF

6 JUIN 2022

q MORET 6 code using dynamic + analog functionnalities :

q Data library: Endfb71
q Fission sampling:

ü Freya 
ü discrete Zucker and Holden tabulated 
ü Pn distributions and corresponding nubars
ü Only Spontaneous fissions

q Highly parallel simulations :

q Simulated signal = 103 s (prompt+delayed)
q Number of initial neutrons per simulation = 104
q Number of independent simulations ~ 103

Excellent reactivity: 𝜌 = -4 pcm
+

Up to 10 mW of simulated power!

< n(t) >= n0e
�(p(2)�p(0))t

= 𝜌 𝑡

Petit & Dumonteil, Nucl. Tech 192, 3 (2015)



THE « CRITICAL CATASTROPHE » RUN

This bounded behavior of fluctuations 
contradicts the « critical catastrophe »
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MODELING OF SPONTANEOUS FISSION SOURCES

q Hypothese:

Ø spontaneous fissions come from U238 (1 n/s/g)
Ø spontaneous fissions might prevent the extinction of the neutron population
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Fluctuations via 0d Clustering via 3d

MODELING OF SPONTANEOUS FISSION SOURCES
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EFFECT OF SPONTANEOUS FISSION SOURCES ON FLUCTUATIONS

q SF explain the bounded behavior of 
fluctuations that bounce in between
Ø Lower bound due to SF themselve
Ø Upper bound due to 𝜌 < 0

time

Po
w

er

No critical catastrophe
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EFFECT OF SPONTANEOUS FISSION SOURCES ON FLUCTUATIONS

q SF explain the bounded behavior of 
fluctuations that bounce in between
Ø Lower bound due to SF themselve
Ø Upper bound due to 𝜌 < 0

No critical catastrophe

q However, while V/M is bounded, it diverges
with 𝑃 ∝ −1/𝜌 !
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EFFECT OF SPONTANEOUS FISSION SOURCES ON FLUCTUATIONS

q SF explain the bounded behavior of 
fluctuations that bounce in between
Ø Lower bound due to SF themselve
Ø Upper bound due to 𝜌 < 0

No critical catastrophe

q However, while V/M is bounded, it diverges
with 𝑃 ∝ 1/𝜌 !

q Thus fluctuations might develop at high P Safety related questions at low power, as 
automatic protection systems rely on a 

time derivative of measured power

Jinfeng Li, « Monte Carlo Investigation of the 
UK’s First EPR Nuclear Reactor Startup Core
Using Serpent », Energies 2020, 13(19), 5168
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cte1 – cte2.z1/ P

EFFECT OF SPONTANEOUS FISSION SOURCES ON CLUSTERING

P [mW] q The spatial correlation function measured at RCF 
exhibits a 1/P behavior as predicted by the modeling

q Taking into account SF explains the linear decay of 
spatial correlations (smoother than the Γ function)

q This also might reveal to be a safety concern for 
decoupled reactors: clustering at the startup of the 
core might screen over-reactive regions that shall
be detected the sooner possible
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EFFECT OF SPONTANEOUS FISSION SOURCES ON CLUSTERING

→ Power smoothely distributed in the core → Power mainly distributed in the upper
region of the reactor

q HPC to reproduce 10 mW of signal
q 1 month of simulation time distributed over 103 cores
q Overall number of simulated neutrons ~ 1012 !

The full neutron 
statistics has been 

simulated analogously



QUANTUM MECHANICS AS A (BRANCHING) STOCHASTIC PROCESS

q Numerical considerations
Ø Quantum mechanics ground state solvers based on DMC (Diffusion Monte Carlo)
Ø DMC ~ Branching Brownian Motion with population control => same as NTE 

q Theoretical considerations
Ø Quantum mechanics seen as a stochastic process [Fenyes, Nelson]
Ø Deep connection with (branching) diffusion processes [Nagasawa]
Ø Ground state → excited states : still problems (for spin>0)

Ø Wick rotation : i t → t
Ø Branching process : -V → + c
Ø Complex conjugate → Adjoint flux

q Neutrons in NTE → “universes/possibilities” in QM ? [Everett]
q Clustering in NTE → decoherence in QM ?


