Courants neutres et nouvelle physique au LHC

Les courants neutres : aujourd'hui et demain LAL, Orsay, 10 décembre 2009

Christophe Grojean CERN-TH & CEA-Saclay-IPhT (Christophe.Grojean[at]cern.ch)

The Standard Model

the strong, weak and electromagnetic interactions of the elementary particles are described by gauge interactions $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

[Gargamelle collaboration, '73]

Christophe Grojean

Nouvelle physique au LHC

The Standard Model

the strong, weak and electromagnetic interactions of the elementary particles are described by gauge interactions $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

Nouvelle physique au LHC

The Standard Model and the Mass Problem

the strong, weak and electromagnetic interactions of the elementary particles are described by gauge interactions $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

the masses of the quarks, leptons and gauge bosons don't obey the full gauge invariance

 \bigotimes $\left(egin{array}{c}
u_e \\
e \end{array}
ight)$ is a doublet of SU(2)_L but $m_{
u_e} \ll m_e$

a mass term for the gauge field isn't $\delta A^a_\mu = \partial_\mu \epsilon^a + g f^{abc} A^b_\mu \epsilon^c$ invariant under gauge transformation

spontaneous breaking of gauge symmetry

Christophe Grojean

Nouvelle physique au LHC

Christophe Grojean

Nouvelle physique au LHC

The source of the Goldstone's symmetry breaking: new phase with more degrees of freedom $SU(2)_L \times SU(2)_R$ massive W[±], Z: 3 physical polarizations=eaten Goldstone bosons $SU(2)_{V}$ ⇒ Where are these Goldstone's coming from? $\nabla(\phi)$ common lore: from a scalar Higgs doublet $H = \left(\begin{array}{c} h^+ \\ h^0 \end{array}\right)$ Im() Higgs doublet = 4 real scalar fields 3 eaten One physical degree of freedom Goldstone bosons the Higgs boson IO^{meas}-O^{fit}I/o^{meas} Good $\Delta \alpha_{had}$ 1875 + 0.002191 1874 5 Γ₋[GeV $.4952 \pm 0.0023$ -0.02758±0.00035 41540 ± 0.037 ••••• 0.02749±0.00012 agreement 20.767 ± 0.025 ••• incl. low Q² data 4 [∠]χ₂ 3 with EW data 0.1037 But the Higgs 0.0742 2 923 + 0.0200.935 0.668 0.670 + 0.027(doublet $\Leftrightarrow \rho$ =1) 0.1513 ± 0.0021 0 1480 hasn't been 0 2314 2324 + 0 0012 80 377 0 2115 ± 0.058 2.092 100 300 30 173.3 172.7 ± 2.9 seen yet... $m_{\!_{\!H}}$ [GeV] other origins of the Goldstone's: condensate of techniquarks, A5...

Christophe Grojean

Nouvelle physique au LHC

The source of the Goldstone'ssymmetry breaking: new phase with more degrees of freedommassive W[±], Z: 3 physical polarizations=eaten Goldstone bosons $SU(2)_L \times SU(2)_R$ Where are these Goldstone's coming from?

common lore: from a scalar Higgs doublet

a (too?) simple picture that calls for new physics

The Higgs has not been seen yet
There is no dynamics: a description but not an explanation of EWSB
Instability under radiative corrections: "the hierarchy problem"
Instability under radiative corrections: triviality, stability...

- Precisions measurements (g_µ-2, LR asymmetries etc)
 Neutrinos masses
 Dark matter
- Dark energy

Matter-antimatter
 asymmetry
 Inflation
 Fermion mass and mixing
 hierarchies

- Strong CP problem
- Charge quantization & GUT
- Quantization of gravity

Christophe Grojean

Nouvelle physique au LHC

LAL, Décembre 2009

V())

The hierarchy problem

need new degrees of freedom to cancel Λ^2 divergences and ensure the stability of the weak scale h

h

top

h

h

add a sym. such that a Higgs mass is forbidden until this sym. is broken Supersymmetry [Witten, '81] @ gauge-Higgs unification [Manton, '79, Hosotani '83] Higgs as a pseudo Nambu-Goldstone boson [Georgi-Kaplan, '84] lower the UV scale Slarge extra-dimension [Arkani-Hamed-Dimopoulos-Dvali, '98] 10³² species [Dvali '07] remove the Higgs @ technicolor [Weinberg'79, Susskind'79] Nouvelle physique au LHC Christophe Grojean

LAL, Décembre 2009

 $m_H^2 \sim m_0^2 - (115 \text{ GeV})^2 \left(\frac{\Lambda}{400 \text{ GeV}}\right)^2$

Hierarchy problem vs flavor: tension Clash of Scales

Higgs sector $\Lambda < 3-4$ TeV

Flavor Λ > 10^{4÷5} TeV

the higher the scale of new physics, the more fine-tuned the Higgs, the less likely a discovery at LHC

SM & al. H = elem. scalar: dim=1 $\Lambda^2 |H|^2$ sick when $\Lambda \to \infty$

 $y_{ij} H q_i \bar{q}_j$ & $rac{1}{\Lambda^2} (q_i \bar{q}_j q_k \bar{q}_k q_l)$

fine when $\Lambda \to \infty$

Christophe Grojean

Nouvelle physique au LHC

Technicolor

H=<qq>>: dim=3

 $\frac{1}{\Lambda^2}|H|^2$ fine when $\Lambda \to \infty$

 $rac{1}{\Lambda^2} H q_i ar q_j$ & $rac{1}{\Lambda^2} (q_i ar q_j q_k ar q_k q_l)$

sick when $\Lambda \to \infty$

LAL, Décembre 2009

Hierarchy problem vs flavor: lesson? Clash of Scales

Higgs sector $\Lambda < 3-4$ TeV

Flavor Λ > 10^{4÷5} TeV

Is flavor telling us anything about the solution to the hierarchy problem?

SM & al.

H = elem. scalar: dim=1 $\Lambda^2 |H|^2$ sick when $\Lambda
ightarrow \infty$

 $y_{ij} H q_i \bar{q}_j \& \frac{1}{\Lambda^2} (q_i \bar{q}_j q_k \bar{q}_k q_l)$ fine when $\Lambda \to \infty$

Christophe Grojean

conformal TC dim H = 1 but dim |H|2 = 4 would solve both pbs but it seems impossible to realize

[Luty-Okui '04, Rattazzi et al '08]

Nouvelle physique au LHC

Technicolor

H=<q \overline{q} >: dim=3 $\frac{1}{\Lambda^2}|H|^2$

fine when $\Lambda \to \infty$

 $rac{1}{\Lambda^2}Hq_iar{q}_j$ & $rac{1}{\Lambda^2}(q_iar{q}_jq_kar{q}_kq_l)$

sick when $\Lambda \to \infty$

Hierarchy problem vs flavor: lesson? Clash of Scales

Higgs sector $\Lambda < 3-4$ TeV

Flavor Λ > 10^{4÷5} TeV

Is flavor telling us anything about the solution to the hierarchy problem?

conformal TC

[Kaplan '91]

SM & al.

H = elem. scalar: dim=1 $\Lambda^2 |H|^2$ sick when $\Lambda \to \infty$

 $y_{ij} H q_i \bar{q}_j \& \frac{1}{\Lambda^2} (q_i \bar{q}_j q_k \bar{q}_k q_l)$ fine when $\Lambda \to \infty$

Christophe Grojean

partial compositeness mixing elem. and composite fermions dim $q_{R,L}$ =3/2, dim $\mathcal{O}_{R,L}$ =d_{R,L} $\frac{q_L \mathcal{O}_R}{\Lambda_R^{d_R-5/2}} + \frac{q_R \mathcal{O}_L}{\Lambda_L^{d_R-5/2}} + \frac{\mathcal{O}_L \mathcal{O}_R}{\Lambda^{d_L+d_R-4}}$ d_{R,L}≈5/2 solves the flavor pb

Nouvelle physique au LHC

Technicolor

H=<q \overline{q} >: dim=3 $\frac{1}{\Lambda^2}|H|^2$

fine when $\Lambda \to \infty$

 $\frac{1}{\Lambda^2} Hq_i \bar{q}_j \quad \& \quad \frac{1}{\Lambda^2} (q_i \bar{q}_j q_k \bar{q}_k q_l)$ sick when $\Lambda \to \infty$

Partial compositeness: fermion masses

partial compositeness mixing elem. and composite fermions dim $q_{R,L}=3/2$, dim $\mathcal{O}_{R,L}=d_{R,L}$ $\frac{q_L \mathcal{O}_R}{\Lambda_R^{d_R-5/2}} + \frac{q_R \mathcal{O}_L}{\Lambda_L^{d_R-5/2}} + \frac{\mathcal{O}_L \mathcal{O}_R}{\Lambda^{d_L+d_R-4}}$

amount of compositeness fqL,R

integrating out heavy fields $\frac{\Lambda_R \Lambda_L}{\Lambda} \left(\frac{\Lambda}{\Lambda_R}\right)^{d_R} \left(\frac{\Lambda}{\Lambda_L}\right)^{d_L} q_L q_R$

fermion mass hierarchy easily generated by small diff. in anomalous dims

alignment mixing angles/masses is also explained

 $V_{CKM} \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$

 $m_{d_i} \propto f_{q_i} f_{d_i}$

 $m_{u_i} \propto f_{q_i} f_{u_i}$ $m_{d_i} \propto V_{CKM}^{ij} \sim f_{q_i} / f_{q_j}$

Christophe Grojean

Nouvelle physique au LHC

Partial Compositeness: fermion masses

Higgs part of the strong sector: it couples only to composite fermions

when the Higgs gets a vev, the light dof will acquire a mass prop. to

$$Y^{eff} = Y_{\star} f_{c_L} f_{c_R}$$

Yukawa hierarchy comes from the hierarchy of compositeness

Christophe Grojean

Nouvelle physique au LHC

Partial compositeness: xdim realization

[Grossman and Neubert, '00] [Gherghetta and Pomarol, '00] [Huber, '03]

fc is the "value" of wavefct. on the IR: $\int \frac{1-2c}{1-(R/R')^{1-2c}} \sim c < 1/2: \text{ heavy fermion} \\ f_c \sim \mathcal{O}(1) \\ f_c \sim (R/R')^{c-1/2} \ll c > 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c \sim (R/R')^{c-1/2} \ll c < 1/2: \text{ light fermion} \\ f_c$

light fermion exponentially localized on the UV braneImage: Image: Overlap with Higgs vev on the IR tinyImage: Overlap with Higgs vev on the IR tinyImage: Overlap with Higgs vev on the IR tiny

UV localized fermion=elementary IR localized fermion=composite 5D models=weakly coupled dual of 4D strongly models

Christophe Grojean

UV

u,d,s

C.02

Nouvelle physique au LHC

Holographic Models of EWSB

Bulk gauge fields: [Pomarol, '00] Holographic technicolor=Higgsless: [Csaki et al., '03 Holographic composite Higgs: [Agashe et al., '04]

Gauge fields + fermions in the bulk

IR

Higgs on the IR brane or Gauge breaking by boundary conditions

UV

 $G=SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$ $G=SO(5) \times U(1)_{X}$ $G=SO(6) \times U(1)_{X}$

Christophe Grojean

UV completion: log running of gauge couplings
 Custodial symmetry from bulk SU(2)_R

Nouvelle physique au LHC

5D Higgsless Models

Christophe Grojean

Nouvelle physique au LHC

Unitarization of (Elastic) Scattering Amplitude

Collider Signatures

unitarity restored by vector resonances whose masses and couplings are constrained by the unitarity sum rules

WZ elastic cross section

VBF (LO) dominates over DY since couplings of q to W' are reduced

Christophe Grojean

Nouvelle physique au LHC

500

1000

102

101

100 GeV

[Birkedal, Matchev, Perelstein '05] [He et al. '07]

 $g_{WW'Z} \le \frac{g_{WWZ} M_Z^2}{\sqrt{3}M_{W'} M_W} \quad \Gamma(W' \to WZ) \sim \frac{\alpha M_{W'}^3}{144 s_w^2 M_W^2}$

a narrow and light resonance

no resonance in WZ for SM/MSSM

uminosity: 300 fb

2000

1500

Number of events at the LHC, 300 fb⁻¹

mWZ (GeV)

2500

3000

W' production

(10 events) $50 \text{ GeV} \rightarrow 10 \text{ fb}^{-1}$

discovery reach

@ LHC

 $550 \text{ GeV} \rightarrow 10 \text{ fb}^{-1}$ $1 \text{ TeV} \rightarrow 60 \text{ fb}^{-1}$

should be seen within one/two year

Facing EW precision data

At the lowest order in the Log(R_{IR}/R_{UV}) expansion: S=T=Y=W=0 At next order $S = \frac{6\pi}{g^2 \log(R_{IR}/R_{UV})} \approx 1.15$...like in usual technicolor models

S can be tuned away by delocalizing the fermions in the bulk they will decouple from W', Z' etc

[Cacciapaglia et al '04, Foadi et al '04, Casalbuoni et al '05

Setup stable under radiative corrections?

Christophe Grojean

Nouvelle physique au LHC

____LAL, Décembre 2009

Composite Higgs Models

Christophe Grojean

Nouvelle physique au LHC

Continuous interpolation between SM and TC

 $\xi = \frac{v^2}{f^2} = \frac{(\text{weak scale})^2}{(\text{strong coupling scale})^2}$

SM limit

b = 0

all resonances of strong sector, except the Higgs, decouple

Technicolor limit

 $\xi = 1$

Higgs decouple from SM; vector resonances like in TC

$$\mathcal{L}_{\text{EWSB}} = \left(a \, \frac{v}{2} \, h \, + b \, \frac{1}{4} \, h^2\right) \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right)$$

Composite Higgs universal behavior for large f a=1-ξ/2 b=1-2ξ

Composite Higgs vs. SMiltiggs

Christophe Grojean

Nouvelle physique au LHC

Dilaton

b=a²

Testing the composite nature of the Higgs?

if LHC sees a Higgs and nothing else*: is it elementary or composite?

\$\$\$\$ evidence for fine-tuning & string landscape ??? \$\$\$\$ Higgs forces have a secret hidden gauge origin ???

Model-dependent: production of resonances at m_{ρ}

Model-independent: study of Higgs properties & W scattering

- strong WW scattering
- strong HH production
- Higgs anomalous coupling
- anomalous gauge bosons self-couplings

* a likely possibility that precision data seems to point to, at least in strongly coupled models

Christophe Grojean

Nouvelle physique au LHC

$$\begin{array}{c} \text{Structure for a functional of the funct$$

6

Nouvelle physique au LHC

Higgs anomalous couplings @ LHC

 $\Delta(\sigma BR)/(\sigma BR)$

$$\Gamma \left(h \to f\bar{f} \right)_{\text{SILH}} = \Gamma \left(h \to f\bar{f} \right)_{\text{SM}} \left[1 - (2c_y + c_H) v^2 / f^2 \right]$$
$$\Gamma \left(h \to gg \right)_{\text{SILH}} = \Gamma \left(h \to gg \right)_{\text{SM}} \left[1 - (2c_y + c_H) v^2 / f^2 \right]$$

observable @ LHC?

(ILC/CLIC could go to few $/_{\circ}$ ie test composite Higgs up to $4\pi f \sim 30 \text{ TeV}$)

Christophe Grojean

Nouvelle physique au LHC

Higgs' BRs and Total Width MCHM5D (Continuet al. '04) with fermions embedded in 5+10 of SO(5)

Christophe Grojean

Nouvelle physique au LHC

Composite Higgs search @ LHC

the modification of Higgs couplings and BRs affects the Higgs search

Espinosa, Grojean, Muehlleitner 'in progress]

Nouvelle physique au LHC

Composite Higgs search @ LHC

the modification of Higgs couplings and BRs affects the Higgs search

contour lines of luminosity needed for 5 σ discovery in the (ξ ,M_H) plane

(neglect effects from heavy resonances)

Nouvelle physique au LHC

[Espinosa, Grojean, Muehlleitner 'in progress]

Christophe Grojean

Strong WW scattering

Giudice, Grojean, Pomarol, Rattazzi '0? $\mathcal{L} \supset \frac{\mathcal{C}_H}{2f^2} \partial^{\mu} \left(|H|^2 \right) \partial_{\mu} \left(|H|^2 \right) \qquad c_H \sim \mathcal{O}(1)$ $H = \begin{pmatrix} 0 \\ \frac{v+h}{\sqrt{2}} \end{pmatrix} \longrightarrow \mathcal{L} = \frac{1}{2} \left(1 + c_H \frac{v^2}{f^2} \right) (\partial^{\mu} h)^2 + \dots$

Modified
Higgs propagatorHiggs couplings
rescaled by $\frac{1}{\sqrt{1+c_H\frac{v^2}{f^2}}} \sim 1-c_H\frac{v^2}{2f^2} \equiv 1-\xi/2$

$$(1-\xi)g^2rac{E^2}{M_W^2}$$

no exact cancellation of the growing amplitudes

Even with a light Higgs, growing amplitudes (at least up to m_{ρ}) $\mathcal{A}(W_{L}^{a}W_{L}^{b} \rightarrow W_{L}^{c}W_{L}^{d}) = \mathcal{A}(s,t,u)\delta^{ab}\delta^{cd} + \mathcal{A}(t,s,u)\delta^{ac}\delta^{bd} + \mathcal{A}(u,t,s)\delta^{ad}\delta^{bc}$ $\mathcal{A}_{LET}(s,t,u) = \frac{s}{v^{2}}$ $\mathcal{A}_{\xi} = \frac{s}{f^{2}}$ unitarity restored by the exchange of heavy vector resonances

Christophe Grojean

Nouvelle physique au LHC

LAL, Décembre 2009

Falkowski, Pokorski, Roberts '07

Onset of Strong Scattering

Contino, Grojean, Moretti, Piccinini, Rattazzi 'to appearNDA estimates: $(\mathcal{A}_{TT \rightarrow TT} \sim g^2) \sim (\mathcal{A}_{LL \rightarrow LL} \sim s/v^2) @ \sqrt{s} \sim 2M_W$ but dicentencline L from T polenization is bond

but disentangling L from T polarization is hard

because of the structure of the amplitudes (Coulomb enhancement)

The onset of strong scattering is delayed to larger energies due to the dominance of TT \rightarrow TT background

The dominance of T background will be further enhanced by the pdfs since the luminosity of W_T inside the proton is $log(E/M_W)$ enhanced

With LHC energy, access to strong scattering is difficult

Christophe Grojean

Nouvelle physique au LHC

Dominant backgrounds: $W\ell\ell4j$, $\bar{t}tW2j$, $\bar{t}t2W$, 3W4j...

forward jet-tag, back-to-back lepton, central jet-veto

v/f	1	$\sqrt{.8}$	$\sqrt{.5}$
significance (300 fb^{-1})	4.0	2.9	1.3
luminosity for 5σ	450	850	3500

⇐ good motivation for SLHC

Christophe Grojean

Nouvelle physique au LHC

Fermion Partners

The couplings of gauge bosons to fermions receive corrections the heavier the fermion, the bigger the correction expect O(10%) deviation in Zb_Lb_L, beyond exp. bound

custodial symmetry might be helpful to protect $Z_{b_L}\overline{b_L}$ [Agashe, Contino, Da Rold, Pomarol '06]

custodial embedding $Q_L = \begin{pmatrix} t_L^{2/3} & t_L^{5/3} \\ b_L^{-1/3} & b_L^{2/3} \end{pmatrix} \equiv (2, \bar{2})_{2/3}$ $t_R \equiv (1, 1)_{-2/3} \\ b_R \equiv (1, 1)_{1/3}$ then b_L is an eigenstate of L \Leftrightarrow R and this ensures that $\delta Z_{b_L \overline{b}_L} =$ but we expect deviations in $Zt_L\overline{t}_L$ $Wt_L\overline{b}_L$ $Zb_R\overline{b}_R$ Search in same-sign di-lepton events [Contino, Servant '08] tt+jets is not a background [except for charge mis-ID and fake e⁻] the resonant (tW) invariant mass can be reconstructed 00000 discovery potential (LHC14TeV) $M_{5/3}$ =500 GeV \rightarrow 56 pb⁻¹ $M_{5/3}$ =1 TeV \rightarrow 15 fb⁻¹

Christophe Grojean

Nouvelle physique au LHC

EW interactions need Goldstone bosons to provide mass to W, Z UNING WITH UNI

We'll need another Gargamelle experiment to discover the still missing neutral current of the SM: the Higgs weak NC \Leftrightarrow gauge principle Higgs NC \Leftrightarrow ?

LHC is prepared to discover the "Higgs"

collaboration EXP-TH is important to make sure e.g. that no unexpected physics (unparticle, hidden valleys) is missed (triggers, cuts...)

Should not forget that the LHC will be a (quark) top machine

and there are many reasons to believe that the top is an important agent of the Fermi scale

Christophe Grojean

Nouvelle physique au LHC